có: \(\dfrac{1}{c}=\dfrac{2}{b}-\dfrac{1}{a}=\dfrac{2a-b}{ab}\Rightarrow2a-b=\dfrac{ab}{c}\)
tương tự ta cũng có \(2c-b=\dfrac{bc}{a}\)
\(VT=\dfrac{c\left(a+b\right)}{ab}+\dfrac{a\left(c+b\right)}{bc}=\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}=\left(\dfrac{c}{a}+\dfrac{a}{c}\right)+\dfrac{a+c}{b}\)
Áp dụng BĐt AM-GM:\(\dfrac{c}{a}+\dfrac{a}{c}\ge2\)
và \(\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{4}{a+c}\Leftrightarrow a+c\ge2b\)
do đó \(VT\ge2+2=4\)
Dấu = xảy ra khi a=b=c