Lời giải:
Áp dụng BĐT AM-GM có:
\(\frac{a}{\sqrt{b}}+\sqrt{b}\geq 2\sqrt{a}\)
\(\frac{b}{\sqrt{a}}+\sqrt{a}\geq 2\sqrt{b}\)
Cộng theo vế và rút gọn thu được:
\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\geq \sqrt{a}+\sqrt{b}\)
Dấu "=" xảy ra khi $a=b$
Lời giải:
Áp dụng BĐT AM-GM có:
\(\frac{a}{\sqrt{b}}+\sqrt{b}\geq 2\sqrt{a}\)
\(\frac{b}{\sqrt{a}}+\sqrt{a}\geq 2\sqrt{b}\)
Cộng theo vế và rút gọn thu được:
\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\geq \sqrt{a}+\sqrt{b}\)
Dấu "=" xảy ra khi $a=b$
1.Cho a,b,c dương, a+b+c≤1.CMR: \(\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}\ge10\)
2.Cho a,b, c >0. CMR: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82};x+y+z\le1\)
Cho a,b,c>0 thoả mãn a2+b2+c2=1
CMR: \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^2+3ac+b^2}}\ge\sqrt{5}\left(a+b+c\right)\)
Cho a;b;c>0.CMR:
\(\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}+\sqrt[3]{\frac{b^2+ca}{abc\left(c^2+a^2\right)}}+\sqrt[3]{\frac{c^2+ab}{abc\left(a^2+b^2\right)}}\ge\frac{9}{a+b+c}\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=3\). Cmr:
\(\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\frac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\frac{9}{\left(c+a\right)^2}+b^2}\) ≥ \(\frac{3\sqrt{13}}{2}\)
C/m các BĐT sau :
\(1.a^3-3a+4\ge b^3-3b
\)
\(2,\frac{1}{\frac{1}{a+c}+\frac{1}{b+d}}\ge\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{c}+\frac{1}{d}}\) với a, b, c, d>0
\(3,a^3+b^3\ge\frac{1}{4};a+b\ge1\)
4, \(a^3+b^3\le a^4+b^4;a+b\ge2\)
5, \(\left(a+b\right)\left(a^3+b^3\right)\left(a^5+b^5\right)\le4\left(a^9+b^9\right);a,b\ge0\)
6, \(\frac{c+a}{\sqrt{a^2+c^2}}\ge\frac{c+b}{\sqrt{c^2+b^2}};a>b>0,c>\sqrt{ab}\)
Các bn làm đc bài nào thì giúp mk với, cảm ơn ạ !
cho a , b , c >0. Chứng minh các bất đẳng thức :
1, ab + bc + ca \(\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2, \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3, \(ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\)
4, \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
5, \(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
choa,b,c > 0. Cmr: \(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{c+a}{ca}}\)
Cho a;b;c>0:abc=1.CMR:
\(\sqrt[3]{\frac{b+c}{2a}}+\sqrt[3]{\frac{c+a}{2b}}+\sqrt[3]{\frac{a+b}{2c}}\le\frac{5\left(a+b+c\right)+9}{8}\)
cho a,b,c > 0 thỏa mãn abc =1. Cmr: \(\frac{1}{\sqrt{ab+a+2}}+\frac{1}{\sqrt{bc+b+2}}+\frac{1}{\sqrt{ca+c+2}}\le\frac{3}{2}\)