Bài 2: Cho a,b là 2 số thỏa mãn a-b=2
Tính giá trị của biểu thức: P=a2( a+1) - b2(b-1) +ab - 3ab(a-b+1)
Bài 3: Cho x + 1/x =3. Tính gt của biểu thức M = x5 + 1/x5
Bài 4: Tính giá trị của biểu thức P= x(x+5) +y(y+5) +2(xy-3)/ x(x+6)+y(y-6)+2xy tại x + y = 2016
Tìm dư trong phép chia đa thức P(x) = x161 + x37 + x13 + x5 + x + 2006 cho đa thức Q(x) = x2 + 1
B1: Làm phép chia:
a) (x^4+x^3+6x^2+5x+5):(x^2+x+1)
b) (x^4+x^3+2x^2+x+1):(x^2+x+1)
c) (3x^3+8x^2-x-10):(3x+5)
B2: Xác định hệ số a, sao cho:
a) (a^3x^3+3ax^2-6x-2a) chia het (x+1)
b) (2x^2-x+2-a) chia het (2x-1)
Cho a,b,c >0 ,,,,, a=b=c >1
CMR: ( a+1/a)^2 +( b+1/b)^2 +(1+1/c)^2 >33
Cho a^3 + b^3 + c^3 = 3abc . Tính số trị biểu thức : N=bc/a^2+ca/b^2+ab/c^2.
cho a + b + c = 5
Chứng minh \(\frac{a^3+b^3+c^3}{a^2+b^2+c^2-ab-ac-bc}=5\)
Câu 1: Cho \(\frac{x}{x^2+x+1}\)=\(\frac{11}{133}\)
Tính A=\(\frac{x^2}{x^4+x^2+1}\)( 2 cách)
Câu 2: Cho x+y+z=4. Tính B=\(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
Câu 3: Cho G=\(\frac{a^2}{ab+b^2}+\frac{b^2}{ab-a^2}+\frac{-\left(a^2+b^2\right)}{ab}\)
a) Rút gọn G
b) Tính G khi \(\frac{a}{b}=\frac{a+1}{b+5}\)
Cho 4a2+b2=5ab và 2a>b>0. Tính A=ab/4a2-b2
b, Cho a+b+c=0. Tính B= (a - b)c3+(b - c) a3+(c - a) b3
c. 1/a +1/b +1/c =0. Tính D= bc/a2 + cx/b2 + ab/c2
cho a+b+c=3 .chứng minh :a^2 + b^2 + c^2 + ab+ bc +ac >= 6
HELPPPPPPPPPP