Xét hiệu
\(a^3-a^2+b^3-b^2+c^3-c^2=0\)
<=>\(a^2(a-1)+b^2(b-1)+c^2(c-1)=0\)
Ta có:\(a^2+b^2+c^2=1\)
=>\(a^2\le1\)
=>|a|\(\le1\)
Mà|a|\(\ge a\)
=>a \(\le1\)
=>\(a^2(a-1)\le0\)
CMTT:\(b^2(b-1)\le0\)
\(c^2(c-1)\le0\)
Mà \(a^2(a-1)+b^2(b-1)+c^2(c-1)=0\)
Dấu "=" xảy ra<=>a=1=>b=c=0
b=1=>a=c=0
c=1=>a=b=0
=>\(a^5+b^5+c^5=1\)