Phương trình đường thẳng qua A có dạng:
\(\Delta:ax+by-a-b=0\left(a^2+b^2\ne0\right)\)
Ta có: \(d\left(B;\Delta\right)=\dfrac{\left|3a+6b-a-b\right|}{\sqrt{a^2+b^2}}=2\)
\(\Leftrightarrow\left|2a+5b\right|=2\sqrt{a^2+b^2}\)
\(\Leftrightarrow4a^2+25b^2+20ab=4\left(a^2+b^2\right)\)
\(\Leftrightarrow21b^2+20ab=0\)
\(\Leftrightarrow\left(21b+20a\right)b=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=0\\21b+20a=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\Delta:x=1\\\Delta:21x-20y-1=0\end{matrix}\right.\)