Ta có \(\left(a-b\right)^2\ge0\)
=>\(a^2-2ab+b^2\ge0\)
=>\(a^2+b^2\ge2ab\)
=>\(\dfrac{a^2+b^2}{ab}\ge2\)
=>\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
Ta có \(\left(a-b\right)^2\ge0\)
=>\(a^2-2ab+b^2\ge0\)
=>\(a^2+b^2\ge2ab\)
=>\(\dfrac{a^2+b^2}{ab}\ge2\)
=>\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
1) Cho m>2, chứng minh m2-2m>0.
Cho a<0; b<0 và a>b. Chứng minh 1/a<1/b
Suy ra kết quả tương tự a≥b>0
1) Cho m>0 và m<1. Chứng minh m2<m
2) Cho a>b>0. Chứng minh a2-b2>0
Cho \(a>0,b>0\), nếu \(a< b\) hãy chứng tỏ :
a) \(a^2< ab\) và \(ab< b^2\)
b) \(a^2< b^2\) và \(a^3< b^3\)
cho a>b>0 a) CM 1/a<1/b(ab>0)
A) cho a>b,b>0.Chứng minh a/b + b/a ≥2
B) cho a<b.Chứng minh; -2a - 3 > -2b - 3
C) chứng minh: x2 + 2y2 + 2xy + 6y +9 > 0
D) cho a + 3 > b + 3.Chứng minh: -5a + 1 < -5b +1
Cho a là số bất kì, hãy đặt dấu "\(< ,>,\le,\ge\)" vào chỗ trống cho đúng :
a) \(a^2..........0\)
b) \(-a^2...........0\)
c) \(a^2+1.........0\)
d) \(-a^2-2..............0\)
Cho tam giác ABC. Các khẳng định sau đúng hay sai ?
a) \(\widehat{A}+\widehat{B}+\widehat{C}>180^0\)
b) \(\widehat{A}+\widehat{B}< 180^0\)
c) \(\widehat{B}+\widehat{C}\le180^0\)
d) \(\widehat{A}+\widehat{B}\ge180^0\)
Cho a,b,c khác 0 . Chứng minh rằng:
ab/c + bc/a + ca/b \(\ge\) a+b+c