1. cho biểu thức
P=\(\dfrac{x+\sqrt{x}}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{x-6\sqrt{x}+4}{x-4}\)
a, rút gọn biểu thức
b, tìm giá trị của P khi x=\(9+4\sqrt{5}\)
rút gọn biểu thức sau A=\(\dfrac{x+12}{x-4}\)+\(\dfrac{1 }{\sqrt{x}+2}\)-\(\dfrac{4}{\sqrt{x}-2}\)(x≥0,x≠4)
1. Cho biểu thức: A=\(\left(\sqrt{x}+\dfrac{4\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4}{2\sqrt{x}-x}\right)\)
Rút gọn biểu thức trên
cho A = \(\dfrac{\sqrt{x}+4}{\sqrt{x}+2x}\) và B = \(\dfrac{\sqrt{x}}{x-4}-\dfrac{2}{\sqrt{x}-2}\)
a, tính giá trị của biểu thức A khi x = 36
b, rút gọn biểu thức P = B : A
cho biểu thức: P = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)
a, Tìm điều kiện của x để P được xác định. Rút gọn P
b, Tìm x để P > 4
A=\(1-\left(\dfrac{2}{1+2\sqrt{x}}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
Rút gọn biểu thức trên
bài 1: cho biểu thức
M = \(\left(1-\dfrac{4\sqrt{x}}{x-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-2\sqrt{x}}{x-1}\)
a, rút gọn M
b, tìm giá trị của x để M = \(\dfrac{1}{2}\)
bài 2: thực hiện phép tính
a,\(\dfrac{1}{3+\sqrt{2}}+\dfrac{1}{3-\sqrt{2}}\)
b, \(\dfrac{2}{3\sqrt{2}-4}-\dfrac{2}{3\sqrt{2}+4}\)
c,\(\dfrac{3}{2\sqrt{3}-3\sqrt{3}}-\dfrac{3}{2\sqrt{3}+3\sqrt{3}}\)
1. Cho biểu thức: A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3\sqrt{x}}{x+\sqrt{x}}+\dfrac{6\sqrt{x}-4}{1-x}\)
Rút gọn biểu thức trên
Cho \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
a, Rút gọn P
b, Tìm GTNN của P