\(\left( {a + b} \right)\; \vdots m\)\( \Rightarrow \) Có số tự nhiên k sao cho \(a + b = m.k\).
\(a \vdots m \Rightarrow \) Có số tự nhiên \({k_1}\) sao cho \(a = m.{k_1}\).
\( \Rightarrow m{k_1} + b = mk \Rightarrow b = m.\left( {k - {k_1}} \right)\)
\( \Rightarrow b \vdots m\).
ta có : a chia hết ho m (1 số tự nhiên bất kì) b cũng chia hết cho m
=> tổng của chúng cũng chia hết cho m : (a+b) chia hết cho m
(a + b) ⋮ m => a + b = mk
a ⋮ m => a = mk1
=> mk1 + b = mk => b = m.(k - k1)
=> b ⋮ m
Lời giải:
Vì (a+b) ⁝ m nên ta có số tự nhiên k (k ≠ 0) thỏa mãn a + b = m.k (1)
Tương tự, vì a ⁝ m nên ta cũng có số tự nhiên h (h ≠ 0) thỏa mãn a = m.h
Thay a = m. h vào (1) ta được: m.h + b = m.k
Suy ra b = m.k – m.h = m.(k – h) (tính chất phân phối của phép nhân với phép trừ).
Mà m ⁝ m nên theo tính chất chia hết của một tích ta có m(k-h) ⁝ m.
Vậy b ⁝ m
Xem thêm các bài giải bài tập Toán lớp 6 sách Cánh diều hay, chi tiết khác:
Vì:
Nếu a chia hết cho m và b chia hết cho m thì ( a+b ) chia hết cho m
Chúc các bạn học tốt !
ta có : a chia hết ho m (1 số tự nhiên bất kì) b cũng chia hết cho m
=> tổng của chúng cũng chia hết cho m : (a+b) chia hết cho m