\(A=\dfrac{1}{\sqrt{12}+\sqrt{11}}\)
\(B=\dfrac{1}{\sqrt{14}+\sqrt{13}}\)
mà \(\sqrt{12}+\sqrt{11}< \sqrt{14}+\sqrt{13}\)
nên A>B
\(A=\dfrac{1}{\sqrt{12}+\sqrt{11}}\)
\(B=\dfrac{1}{\sqrt{14}+\sqrt{13}}\)
mà \(\sqrt{12}+\sqrt{11}< \sqrt{14}+\sqrt{13}\)
nên A>B
So sánh
a,\(\sqrt{11}+\sqrt{14}\) với \(2\sqrt{12}\)
b,\(A=\sqrt{a+1}+\sqrt{a+3}\) với \(B=2\sqrt{a+2}\)
c,\(\sqrt{2020}-\sqrt{2018}\)
d,\(\sqrt{2015}-\sqrt{2013}\)
B2: rút gọn:
a, \((\sqrt{14}+\sqrt{6})(\sqrt{5}-\sqrt{21})\)
b, A= \(\sqrt{7+\sqrt{15}}-\sqrt{7-\sqrt{13}}\)
giúp em với ạ , em cảm ơn nhiều
a. So sánh \(\sqrt{25+9}\) và \(\sqrt{25}+\sqrt{9};\)
b. Với a > 0 và b > 0, chứng minh \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}.\)
so sánh: \(\sqrt{14}-\sqrt{13}\) và \(2\sqrt{3}-\sqrt{11}\)
Rút gọn biểu thức
A. (2-√3)\(\sqrt{7+4\sqrt{3}}\)
B. \(\sqrt{13+4\sqrt{10}}\:+\:\sqrt[]{13-4\sqrt{10}}\)
C.(3 - √2) \(\sqrt{11+6\sqrt{2}}\)
D. (√5+√7) \(\sqrt{12-2\sqrt{35}}\)
E. (√2-√9)\(\sqrt{11+2\sqrt{18}}\)
F. \(\sqrt{46-6\sqrt{5}}\:+\:\sqrt{29-12\sqrt{5}}\)
G.\(\sqrt{49-5\sqrt{96}}\:+\:\sqrt{49+5\sqrt{96}}\)
H.\(\sqrt{13-\sqrt{160\:\:\:\:}}\:+\:\sqrt{53+4\sqrt{90}}\)
1] rút gọn
a) (\(\sqrt{12}\) + \(3\sqrt{5}\) - \(4\sqrt{135}\)) 13
b) \(\sqrt{252}\) - \(\sqrt{700}\) + \(\sqrt{1008}\) - \(\sqrt{448}\)
c) \(2\sqrt{40\sqrt{12}}\) - \(2\sqrt{\sqrt{75}}\) -\(3\sqrt{5\sqrt{48}}\)
2]
a) A= \(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
b) B= \(\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)
c) C= \(\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
Các bạn giúp mình giải các bài này với ạ!!!
A= \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
B=\(\sqrt{14-2\sqrt{13}}\)
C=\(\sqrt{14+4\sqrt{10}}\)
b2. So sánh
a) 7 + \(\sqrt{5}\) và 11 - \(\sqrt{2}\)
b) \(\sqrt{2005}\) + \(\sqrt{2007}\) và \(2\sqrt{2006}\)
c) \(\sqrt{10}\) + \(\sqrt{13}\) và \(2\sqrt{11}\)
d) \(\sqrt{5}+\sqrt{7}\) và \(3+\sqrt{6}\)
Rút gọn:
a) \(\sqrt{5+2\sqrt{6}+\sqrt{14-4\sqrt{6}}}\)
b) \(\sqrt{5-2\sqrt{6}}+\sqrt{11-4\sqrt{6}}\)
c) \(\sqrt{23+6\sqrt{10}}+\sqrt{47+6\sqrt{10}}\)
d) \(\sqrt{21-6\sqrt{10}}+\sqrt{21+6\sqrt{10}}\)