P=\(\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-\dfrac{x\sqrt{x}+1}{x-\sqrt{x}+1}\)
a) Rút gọn
b)Tìm tất cả giá trị của x để P<4
c0 Tìm tất cả giá trị nguyên của x để P cũng nhận giá trị nguyên
Cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-\sqrt{x}}\right):\dfrac{\sqrt{x+1}}{3}\) với x >0; x khác 1
a. Rút gọn biểu thức P
b. Tìm giá trị của x để =1
Bài 1:
Q = \(\left(\dfrac{1}{\sqrt{a}+1}\right)\).\(\left(\dfrac{1}{a+\sqrt{a}}\right)\):\(\dfrac{\sqrt{a}-1}{a+2\sqrt{a+1}}\)
a, rút gọn
b, so sánh Q với 1
*) Q = \(\dfrac{1}{x-2\sqrt{x+3}}\) tìm giá trị lớn nhất
Cho biểu thức : \(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
a. Nêu điều kiện và rút gọn
b. Tìm giá trị nhỏ nhất của P
5.Q=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\).\(\dfrac{\sqrt{x}+1}{\sqrt{x}}\) với x >0,x ≠ 1
a)Chứng minh rằng Q=\(\dfrac{2}{X-1}\)
b)Tìm x ϵ Z để biểu thức A nhận giá trị nguyên
cho biểu thức:
P=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}\right)\)\(:\left(\dfrac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\dfrac{1}{x+1}\right)\)
với x\(\ge\)0;x\(\ne\)1
1)Rút gọn P
2)Tìm x để P<\(\dfrac{1}{2}\)
3) tìm m để phương trình (\(\sqrt{x}+1\))P= m-x có nghiệm x
\(\left\{\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right\}:\left\{1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right\}\)
a, Rút gọn P
b, Tìm các giá trị của x để P = \(\dfrac{6}{5}\)
Giúp mình với ạ, Cảm ơn trước!
Rút gọn bt A=\(\left(\dfrac{1+\sqrt{x}}{x+1}-\dfrac{4-3\sqrt{x}}{x-4\sqrt{x}+4}\right):\left(\dfrac{x-\sqrt{x}}{x\sqrt{x}-2x+\sqrt{x}-2}\right)\)
Sau đó tìm x để A>1
cho bt A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left[\dfrac{2}{x}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right]\)
a)rút gọn bt A
b)tính giá trị của bt A khi\(x=4+2\sqrt{3}\)
c)tìm giá trị của x để bt \(\sqrt{A}\)có giá trị nỏ nhất