Lời giải:
Theo BĐT Bunhiacopxky ta có:
$M^2=(\sin A+\sqrt{3}\cos A)^2\leq (\sin ^2A+\cos ^2A)(1+3)=1.4=4$
$\Rightarrow -2\leq M\leq 2$
Do đó $M$ không thể nhận giá trị $2\sqrt{3}$ vì $2\sqrt{3}>2$
Đáp án C.
Lời giải:
Theo BĐT Bunhiacopxky ta có:
$M^2=(\sin A+\sqrt{3}\cos A)^2\leq (\sin ^2A+\cos ^2A)(1+3)=1.4=4$
$\Rightarrow -2\leq M\leq 2$
Do đó $M$ không thể nhận giá trị $2\sqrt{3}$ vì $2\sqrt{3}>2$
Đáp án C.
Biết \(90^0< a< 180^o\); \(0^o< b< 90^o\) và \(cos\left(a-\dfrac{b}{2}\right)=-\dfrac{1}{4}\); \(sin\left(\dfrac{a}{2}-b\right)=\dfrac{1}{3}\). Giá trị biểu thức \(P=72cos\left(a+b\right)+49\) bằng
A. \(P=4\sqrt{30}\)
B. \(P=2\sqrt{30}\)
C. \(P=-4\sqrt{30}\)
D. \(P=-2\sqrt{30}\)
sina + cosa= \(\sqrt{2}\) sin(a+\(\dfrac{\pi}{4}\)) = \(\sqrt{2}\) cos( a-\(\dfrac{\pi}{4}\))
Cho tam giác ABC có A là góc tù. Xét dấu các biểu thức.
a, M = sin a + sin b + sin c.
b, M = sos a . cos b . cos c
c, D = cos a/2 . sin b/2 . cot c/2
d, D = cot a . tan b . cot c
Mong mọi người giúp đỡ ạ!
Chứng minh các biểu thức sau không phụ thuộc vào x:
1, \(A=3\left(sin^4x+cos^4x\right)-2\left(sin^6x+cos^6x\right)\)
2, \(B=cos^6x+2sin^4x.cos^2x+3sin^2x.cos^4x+sin^4x\)
3, \(C=cos\left(x-\dfrac{\pi}{3}\right).cos\left(x+\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{6}\right).cos\left(x+\dfrac{3\pi}{4}\right)\)
4, \(D=cos^2x+cos^2\left(x+\dfrac{2\pi}{3}\right)+cos^2\left(\dfrac{2\pi}{3}-x\right)\)
5, \(E=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)-\left(sin^8x+cos^8x\right)\)
6, \(F=cos\left(\pi-x\right)+sin\left(\dfrac{-3\pi}{2}+x\right)-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\dfrac{3\pi}{2}-x\right)\)
Không dùng bảng số và máy tính, chứng minh rằng :
a) \(\sin20^0+2\sin40^0-\sin100^0=\sin40^0\)
b) \(\dfrac{\sin\left(45^0+\alpha\right)-\cos\left(45^0+\alpha\right)}{\sin\left(45^0+\alpha\right)+\cos\left(45^0+\alpha\right)}=\tan\alpha\)
c) \(\dfrac{3\cot^215^0-1}{3-\cot^215^0}=-\cot15^0\)
d) \(\sin200^0\sin310^0+\cos340^0\cos50^0=\dfrac{\sqrt{3}}{2}\)
Giá trị lớn nhất của biểu thức \(A=4\sqrt{2}sinx+cos2x+2\) có dạng \(a+b\sqrt{c}vớic\le a\) Tính S \(=a^2-b\)
Giúp e vs ạ, e cảm ơn trc ạ!!
Tính :
a) \(\cos\left(\alpha+\dfrac{\pi}{3}\right)\), biết \(\sin\alpha=\dfrac{1}{\sqrt{3}}\) và \(0< \alpha< \dfrac{\pi}{2}\)
b) \(\tan\left(\alpha-\dfrac{\pi}{4}\right)\), biết \(\cos\alpha=-\dfrac{1}{3}\) và \(\dfrac{\pi}{2}< \alpha< \pi\)
c) \(\cos\left(a+b\right);\sin\left(a-b\right)\), biết
\(\sin a=\dfrac{4}{5};0^0< a< 90^0\) và \(\sin b=\dfrac{2}{3};90^0< b< 180^0\)
1. Rút gọn biểu thức \(P=cos^4x-sin^4x\)
\(A.P=cos2x\) \(B.P=\dfrac{3}{4}+\dfrac{1}{4}cos4x\) \(C.P=\dfrac{1}{4}+\dfrac{3}{4}cos4x\) \(D.P=\dfrac{3}{4}-\dfrac{1}{4}cos4x\)
2.Đơn giản biểu thức \(D=sin\left(\dfrac{5\pi}{2}-\alpha\right)+cos\left(13\pi+\alpha\right)-3sin\left(\alpha-5\pi\right)\)
\(A.3sina-2cosa\) \(B.3sina\) \(C.-3sina\) \(D.2cosa+3sina\)
Trắc nghiệm nhưng mong mn trình bày bài làm giúp em để tham khảo với ạ. Em cảm ơn
cho A , B , C là 3 góc của tam giác ABC . chứng minh rằng : a) sin2A + sin2B + sin2C = 4sinAsinBsinC ; b) cosA + cosB + cosC = 1 = 4sin\(\frac{A}{2}\)sin\(\frac{B}{2}\)sin\(\frac{C}{2}\) ; c) cos2A + cos2B + cos2C = 1 - 2cosAcosBcosC