Vai trò a,b,c như nhau giả sử a < b < c
Mà a, b, c là các số nguyên tố khác nhau đôi một
=> \(a\ge2\), \(b\ge3\), \(c\ge5\)
=> \(\left\{{}\begin{matrix}\dfrac{1}{\left[a,b\right]}=\dfrac{1}{ab}\le\dfrac{1}{2.3}\le\dfrac{1}{6}\\\dfrac{1}{\left[b,c\right]}=\dfrac{1}{bc}\le\dfrac{1}{3.5}\le\dfrac{1}{15}\\\dfrac{1}{\left[c,a\right]}=\dfrac{1}{ac}\le\dfrac{1}{2.5}\le\dfrac{1}{10}\end{matrix}\right.\)
=> \(\dfrac{1}{\left[a,b\right]}+\dfrac{1}{\left[b,c\right]}+\dfrac{1}{\left[c,a\right]}\le\dfrac{1}{6}+\dfrac{1}{15}+\dfrac{1}{10}\)
=> \(\dfrac{1}{\left[a,b\right]}+\dfrac{1}{\left[b,c\right]}+\dfrac{1}{\left[c,a\right]}\le\dfrac{1}{3}\)
=> đpcm