Ta có:
a < b và 2 > 0 => 2a < 2b
a < b cộng hai vế với a
=> a + a < a + b => 2a < a + b
a < b và -1 < 0 => -a > -b
Ta có:
a < b và 2 > 0 => 2a < 2b
a < b cộng hai vế với a
=> a + a < a + b => 2a < a + b
a < b và -1 < 0 => -a > -b
Cho a < b, hãy so sánh
a) 2a + 1 với 2b + 1
b) 2a +1 với 2b + 3
cho a>b hãy so sánh:
a) 2a+4 và 2b +4 b) 7-2a và 7-2b c) 5a+3 và 5b-3 d) 2a+5 và 2b-1So sánh a và b nếu :
a) \(a+5< b+5\)
b) \(-3a>-3b\)
c) \(5a-6\ge5b-6\)
d) \(-2a+3\le-2b+3\)
Cho \(a< b\), chứng tỏ :
a) \(2a-3< 2b-3\)
b) \(2a-3< 2b+5\)
A) cho a>b,b>0.Chứng minh a/b + b/a ≥2
B) cho a<b.Chứng minh; -2a - 3 > -2b - 3
C) chứng minh: x2 + 2y2 + 2xy + 6y +9 > 0
D) cho a + 3 > b + 3.Chứng minh: -5a + 1 < -5b +1
1. Cho a < b, chứng tỏ rằng:
a). \(3-6a>1-6b\)
b). \(7\left(a-2\right)< 7\left(b-2\right)\)
c). \(\dfrac{1-2a}{3}>\dfrac{1-2b}{3}\)
2. So sánh a và b nếu:
a). \(a+23< b+23\)
b). \(-12a>-12b\)
c). \(5a-6\ge5b-6\)
d). \(\dfrac{-2a+3}{5}\le\dfrac{-2b+3}{5}\)
Cho \(a< b\), chứng minh :
a) \(3a+1< 3b+1\)
b) \(-2a-5>-2b-5\)
Cho \(m< n\), hãy so sánh "
a) \(5m\) và \(5n\)
b) \(-3m\) và \(-3n\)
cho a<b hãy so sánh
a+b và 2b
-a và - b