quá đơn giản
ở trên a(a-b)+b(b-c)+c(c-a)+0 suy ra a=b=c
thay vào k=a^3x3-3a^3=3a^2 -3a+5=3a^2+-3a+5
min của k là min của 3a^2-3a+5 là bằng 17/4
quá đơn giản
ở trên a(a-b)+b(b-c)+c(c-a)+0 suy ra a=b=c
thay vào k=a^3x3-3a^3=3a^2 -3a+5=3a^2+-3a+5
min của k là min của 3a^2-3a+5 là bằng 17/4
Tìm x, y, z thỏa \(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)\)
Tìm min \(K=a^3+b^3+c^3-3abc +3ab-3c+5\)
Với a,b,c thuộc R thỏa mãn : \(\left(3a+3b+3c\right)^3=24+\left(3a+b-c\right)^3+\left(3b+c-a\right)^3+\left(3c+a-b\right)^3\)
CMR : (a+2b)(b+2c)(c+2a)=1
cho a,b,c là 3 cạnh của tam giác. Chứng minh rằng:
a) \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< 2\)
b)\(a^3+b^3+c^3+3abc>ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\)
Phân tích đa thức thành nhân tử :
a ) \(\left(x+5\right)^5-x^5-y^5\)
b ) \(A=3abc+a^2\left(a-b-c\right)+b^2\left(b-a-c\right)+c^2\left(c-a-b\right)-c\left(b-c\right)\left(a-c\right)\).
Cho a-b-c=2
Tính M=\(\frac{a^3-b^3-c^3-3abc}{\left(a+b\right)^2+\left(b-c\right)^2+\left(c+a\right)^2}\)
Giúp mình nhé mình đang cần gấp. Thanks các bạn
1. Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng \(a^2\) chia cho 5 dư 1
2. Rút gọn biểu thức : \(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
3. Chứng minh hằng đẳng thức: \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Cho a+b+c=3
Tính S=\(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
Thanks các bạn!
rút gọn
\(\left(a+b+c\right)^3-\left(b+c-a\right)^3-\left(a+c-b\right)^3-\left(a+b-c\right)^3\)
Cho các số thực a,b,c đôi một khác nhau thỏa mãn \(\left(a-b\right)\sqrt[3]{1-c^3}+\left(b-c\right)\sqrt[3]{1-a^3}+\left(c-a\right)\sqrt[3]{1-b^3}=0\)
Chứng minh rằng \(\sqrt[3]{\left(1-a^3\right)\left(1-b^3\right)\left(1-c^3\right)}+abc=1\)