\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=\dfrac{1}{10}\)
\(\Rightarrow2017\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)=\dfrac{2017}{10}\)
\(\Rightarrow\dfrac{2017}{a+b}+\dfrac{2017}{b+c}+\dfrac{2017}{a+c}=201,7\)
\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}=201,7\)
\(\Rightarrow\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a}{b+c}+\dfrac{a+c}{a+c}+\dfrac{b}{a+c}=201,7\)
\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{a+c}=201,7\)
\(\Rightarrow3+\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}=201,7\)
\(\Rightarrow\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}=198,7\)
Ta có: \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{10}\)
\(=>2017\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{2017}{10}\)
\(=>\dfrac{2017}{a+b}+\dfrac{2017}{b+c}+\dfrac{2017}{c+a}=201,7\)
Mà 2017 = a+b+c nên ta có:
\(=>\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=201,7\)
\(=>1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{a+c}=201,7\)
\(=>\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=201,7-3=198,7\)
CHÚC BẠN HỌC TỐT....