\(A+B=1+\dfrac{1}{\sqrt{x}+3}\left(đk:x\ge0\right)\)
Để A+B nhận giá trị nguyên thì: \(\sqrt{x}+3\inƯ\left(1\right)=\left\{1;-1\right\}\)
Vì \(x\ge0\)
\(\Rightarrow x\in\varnothing\)
Để A+B là số nguyên thì \(\sqrt{x}+4⋮\sqrt{x}+3\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{1;-1\right\}\)(vô lý)