\(\overrightarrow{AB}\)=(-2;4;-16), \(\overrightarrow{n_P}\)=(2;-1;1), \(\overrightarrow{n_Q}\)=\(\left[\overrightarrow{AB},\overrightarrow{n_P}\right]\)= -6(2;5;1).
Phương trình mặt phẳng cần tìm là:
(Q): 2x+5y+z -11=0.
\(\overrightarrow{AB}\)=(-2;4;-16), \(\overrightarrow{n_P}\)=(2;-1;1), \(\overrightarrow{n_Q}\)=\(\left[\overrightarrow{AB},\overrightarrow{n_P}\right]\)= -6(2;5;1).
Phương trình mặt phẳng cần tìm là:
(Q): 2x+5y+z -11=0.
Cho (P): 2x + y – 4 = 0 và (Q): 3y + z +2 = 0 cắt nhau theo giao tuyến là đường thẳng d. Viết ptmp(R) biết
a) (R) vuông góc với d và qua O(0; 0; 0)
b) (R) chứa d và qua M(1;-1;3)
c) (R) chứa d và qua N(7;-1;1)
d) (R) chứa d và song song với AB biết (-1; 1; 0) và B(2; -1; 2)
Cho hai mặt phẳng (P): ax+2y-az+1=0 và (Q): 3x-(b+1)y+2z-b=0. Tìm hệ thứcliên hệ giữa a và b để (P) và (Q) vuông góc với nhau.
A. a-2b-2=0
B. 2a-b=0
C. \(\dfrac{a}{3}=\dfrac{2}{-\left(b+1\right)}=\dfrac{-a}{2}\ne\dfrac{1}{-b}\)
D. \(\dfrac{a}{3}\ne\dfrac{2}{-\left(b+1\right)}\ne\dfrac{-a}{2}\ne\dfrac{1}{-b}\)
Trong không gian Oxyz cho I(3; 1;-1) và M(1; 4;2). Mặt phẳng (P) qua M và tiếp xúc với mặt cầu tâm I bán kính IM. Phương trình (P) là:
A. 2x-3y-3z+16=0. B. -2x + 3y + 3z +16 = 0. C. 3x + y – z -5 =0. D. x+4y+z-18=0.
cho mp (P) x+y-z+3=0 và đường thẳng d:\(\begin{cases}x=3+2t\\y=-2-3t\\z=1-4t\end{cases}\) . Gọi I là giao điểm của d và (P). Viết pt đường thẳng \(\Delta\) nằm trg (P) sao cho \(\Delta\) vuông góc với d.Khoảng cách từ I đến \(\Delta\) bằng \(\sqrt{29}\)
Trong không gian Oxyz cho đt (d): (x-1) / (2m+1) = (y+3)/2 = (z+1)/ (m-2) và mp (P): x+y+z -6=0, hai điểm A(2,2,2), B(1,2,3) thuộc (P). Giá trị của m để AB vuông góc với hình chiếu của d trên (P) là?
A.m=1
B.m=-1
C.m=2
D.m=-3
Trong không gian Oxyz cho điểm A(-4;-2;4) và đường thẳng d :
\(\begin{cases}x=-3+2t\\y=1-t,t\in R\\z=-1+4t\end{cases}\)
Viết phương trình đường thẳng \(\Delta\) đi qua A, cắt và vuông góc với đường thẳng d
Cho A(1;4;2), B(-1;2;4) và đt d: (x-1)/-1 = y+2 = z/2. Tìm m thuộc d sao cho ma+mb ngắn nhất
Cho 3 điểm A ( 1;-2;0 ) B ( 2;-1;1 ) C ( 1;1;0 ) D ( 0;-2;0 ). Viết phương trình mặt phẳng đi qua trọng tâm G của tam giác ABC và vuông góc với CD
Cho mp (P): 3x – y – z + 2 = 0
a) Cho điểm C(-3; 2; 4). Tính d(C; (P))
b) Tìm điểm M thuộc Ox sao cho khoảng cách từ M đến O và đến mp(P) là bằng nhau
c) Viết pt mp (Q) song song với (P) và (Q) cách A(-1; 3;2) một khoảng bằng 5
d) Viết pt mp (Q) song song với (P) và (Q) cách B(0; 1; -4) một khoảng bằng khoảng cách từ B đến mp(P)
e) Viết pt mp(P) song song và cách mp(Q) một khoảng bằng 3
f) Cho (P1): 6x – 2y – 2z +9. Tính khoảng cách giữa (P) và (P1)
g) Cho (P2): 3x – y – z – 10 = 0. Viết pt mp song song và cách đều (P) và (P2)