Sửa lại nha:
Cho 4 số \(x_1;x_2;x_3;x_4\). Thỏa mãn điều kiện:
\(a_{x^2}=a_1.a_3;a_{3^2}=a_2.a_3\)
CM:\(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)=\(\frac{a_1}{a_4}\)
Sửa lại nha:
Cho 4 số \(x_1;x_2;x_3;x_4\). Thỏa mãn điều kiện:
\(a_{x^2}=a_1.a_3;a_{3^2}=a_2.a_3\)
CM:\(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)=\(\frac{a_1}{a_4}\)
Cho dãy tỉ số bằng nhau: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2014}}{a_{2015}}\). CMR ta có đẳng thức: \(\frac{a_1}{a_{2015}}=\left(\frac{a_1+a_2+a_3+...+a_{2014}}{a_2+a_3+a_4+...+a_{2015}}\right)^{2014}\)
Cho: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\) với \(a_1+a_2+...+a_n\)# 0. Tính:
1. A = \(\frac{a^2_1+a^2_2+...+a^2_n}{\left(a_1+a_2+...+a_n\right)^2}\)
2. B = \(\frac{a^9_1+a^9_2+...+a^9_n}{\left(a_1+a_2+...+a_n\right)^9}\)
Cho: \(0< a_1< a_2< a_3< ...< a_{15}\)
Chứng minh rằng: \(\frac{a_1+a_2+....+a_{15}}{a_5+a_{10}+a_{15}}< 5\)
Bài 1 : Cho \(\dfrac{U+2}{U-2}\) = \(\dfrac{V+3}{V-3}\) và \(U^2\) + \(V^2\) = 52 .
Tính U ; V .
Bài 2 : Cho \(\dfrac{x}{y}=\dfrac{z}{t}\) . Cmr \(\dfrac{x.y}{z.t}=\dfrac{\left(x+y\right)^2}{\left(z+t\right)^2}\) .
Bài 3 : Cho \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=\text{4}\) . Tính M \(\dfrac{a-3b+2c}{a'-3b'+2c'}\) .
Bài 4 : Cho \(\left(a_2\right)^2=a_1.a_3;\left(a_3\right)^2=a_2.a_4\) .
Cmr \(\dfrac{\left(a_1\right)^2+\left(a_2\right)^2+\left(a_3\right)^2}{\left(a_2\right)^2+\left(a_3\right)^2+\left(a_4\right)^2}=\dfrac{a_1}{a_3}\) .
Bài 5 : Cho \(\dfrac{a}{c}=\dfrac{c}{b}\) . Cmr :
a) \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)
b) \(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-c}{a}\)
Tìm các số x1, x2, x3, ... , xn-1, xn biết rằng:
\(\dfrac{x_1}{a_1}=\dfrac{x_2}{a_2}=\dfrac{x_3}{a_3}=...=\dfrac{x_{n-1}}{a_{n-1}}=\dfrac{x_n}{a_n}\) và x1 + x2 + x3 + ... + xn-1 + xn = c
(với a1, a2, a3, ... , an-1, an ≠ 0 và a1 + a2 + a3 + ... + an-1 + an ≠ 0)
a) Tìm các số a1 ,a2 ,a3 ,...,a9 biết:
\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=...=\dfrac{a_9-9}{1}\)
và a1+a2+a3+...+a9=90
b) Tìm x, biết rằng:
\(\dfrac{1+2y}{18}=\dfrac{1+4y}{24}=\dfrac{1+6y}{6x}\)
Cho 21 điểm \(A_1,A_2,A_3,...,A_{21}\), Trong đó không có ba điểm bất kì nào thẳng hàng
a, Vẽ được bao nhiêu đường thẳng đi qua hai điểm bất kì trong 21 điểm trên?
b, Từ một điểm bất kì trong 21 điểm trên, ta kẻ được bao nhiêu đường thẳng song song với các đường thẳng ở câu a
cho \(\dfrac{x_1}{x_2}=\dfrac{x_2}{x_3}=\dfrac{x_3}{x_4}...=\dfrac{x_{2016}}{x_{2017}}\)
chứng minh: \(\left(\dfrac{x_1+x_2+x_3+...+x_{2016}}{x_2+x_3+x_4+...+x_{2017}}\right)^{2016}=\dfrac{x_1}{x_{2017}}\)
a)\(\frac{-3}{2}-2x+\frac{3}{4}=-2\)
b)\(\left(\frac{-2}{3}x-\frac{3}{5}\right)\left(\frac{3}{-2}-\frac{10}{3}\right)=\frac{2}{5}\)
c)\(\frac{x}{2}-\left(\frac{3x}{5}-\frac{13}{5}\right)=-\left(\frac{7}{5}+\frac{7}{10}.x\right)\)
d)\(\frac{2x-3}{3}+\frac{-3}{2}=\frac{5-3x}{6}-\frac{1}{3}\)
e)\(\frac{2}{3x}-\frac{3}{12}=\frac{4}{5}-\left(\frac{7}{x}2\right)\)
k)\(\frac{13}{x-1}+\frac{5}{2x-2}-\frac{6}{3x-3}\)
m)\(\left(\frac{3}{2}-\frac{2}{-5}\right):x-\frac{1}{2}=\frac{3}{2}\)
n)\(\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right)\left(2x-2\right)=\left(\frac{-3}{4}+\frac{5}{22}+\frac{3}{26}\right)\)
Giải giúp mk
mk đang cần ghấp trong hôm nay
cám ơn mọi người