Cho ba số x y z khác 0 thoả mãn x+y+z = 2003 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2003}\).
tính giá trị biểu thức \(\left(x^3+y^3\right)\left(y^5+z^5\right)\left(x^7+z^7\right)\)
Cho các số x, y, z khác 0 thỏa mãn đồng thời
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) và \(\frac{2}{xy}-\frac{1}{z^2}=4\)
Tính giá trị biểu thức: \(P=\left(x+2y+z\right)^{2020}\)
1CMR: x2+y2+8\(\ge\) xy+2x+2y
2 Cho a+b+c=6 . Cmr: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{3}{4}\)
3 Cho x+y+z+xy+yz+zx=6. Cmr: x2+y2+z2 \(\ge3\)
Cho: x,y,z \(\ge\) 0; x+y+z \(\le\)3
Tìm giá trị nhỏ nhất của biểu thức A = \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\).Hãy tính giá trị biểu thức: A=\(\dfrac{xy}{z^2}+\dfrac{yz}{x^2}+\dfrac{zx}{y^2}\)
1)tính giá trị nhỏ nhất của B=3*|x-1|+4-3x
2)Chứng minh rằng :\(a^4+b^4+c^4+d^4\ge4abcd\)
3)Cho 2 số a và b thỏa mản a\(\ge\)1 ;b\(\ge\)1.Chứng minh :\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
4)cho x,y,z đôi một khác nhau và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
tính giá trị của biểu thức \(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
5)cho phương trình ẩn x sau : (2x=m)(x-1)-2x2+mx+m-2=0.tìm các giá trị của m để phương trình có nghiệm là một số không âm
mình đang cần gấp ,thứ 7 kiểm tra học kì II rồi!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1.cho x+y+z=xyz và xy+yz+zx≠3
cmr: x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)/xy+yz+zx=xyz
2.cmr nếu c^2+2(ab-ac-bc)=0và b≠c,a+b≠c thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
3. cho a,b,c thỏa mãn abc≠0 và ab+bc+ca=0
tính :P=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
CMR:các biểu thức sau không phụ thuộc vào x,y,z:
\(P=\dfrac{x-y}{xy}+\dfrac{y-z}{yz}+\dfrac{z-x}{zx}\) Q=\(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(x-z\right)\left(y-z\right)}+\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)
Giải các phương trình sau:
a)\(\left\{{}\begin{matrix}x+y-xy=8\\y+x+yz=15\\z+x+xz=35\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^3-3x-2=2-y\\y^3-3y-2=4-2z\\z^3-3z-2=6-3x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^3+\frac{1}{3}y=x^2+x-\frac{4}{3}\\y^3+\frac{1}{4}z=y^2+y-\frac{5}{4}\\z^3+\frac{1}{5}x=z^2+z-\frac{6}{5}\end{matrix}\right.\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!