Với x là số dương, áp dụng bđt cauchy ta có:
\(\sqrt{x^3+1}=\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\le\frac{x+1+x^2-x+1}{2}=\frac{x^2+2}{2}\)
=> \(\sqrt{\frac{1}{x^3+1}}\ge\frac{2}{x^2+2}\left(1\right)\)
Áp dụng bđt (1) ta được:
\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\left(\frac{b+c}{a}\right)^3}}\ge\frac{2}{\left(\frac{b+c}{a}\right)^2+2}=\frac{2a^2}{\left(b+c\right)^2+2a^2}\)
Suy ra \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{2a^2}{2\left(b^2+c^2\right)+2a^2}=\frac{a^2}{a^2+b^2+c^2}\left(2\right)\)
Tương tự ta có: \(\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}\ge\frac{b^3}{a^3+b^3+c^3}\left(3\right);\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^3}{a^3+b^3+c^3}\left(4\right)\)
Cộng (2),(3),(4) vế theo vế:
\(VT\ge\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)
Dấu "=" xảy ra khi a=b=c