Ta có:
\(\dfrac{1}{1+2x}=1-\dfrac{1}{1+2y}+1-\dfrac{1}{1+2z}=\dfrac{2y}{1+2y}+\dfrac{2z}{1+2z}\ge\dfrac{4\sqrt{yz}}{\sqrt{\left(1+2y\right)\left(1+2z\right)}}\left(@\right)\)
Tương tự ta có:
\(\left\{{}\begin{matrix}\dfrac{1}{1+2y}\ge\dfrac{4\sqrt{zx}}{\sqrt{\left(1+2z\right)\left(1+2x\right)}}\left(@A\right)\\\dfrac{1}{1+2z}\ge\dfrac{4\sqrt{xy}}{\sqrt{1+2x}.\sqrt{1+2y}}\left(@A@\right)\end{matrix}\right.\)
Từ (@); (@A); (@A@) ta suy ra
\(\dfrac{1}{\left(1+2x\right).\left(1+2y\right).\left(1+2z\right)}\ge\dfrac{64xyz}{\left(1+2x\right)\left(1+2y\right)\left(1+2z\right)}\)
\(\Rightarrow xyz\le\dfrac{1}{64}\)