Tìm Min P = (x2+y2+z2)/(xy+2xz+yz) với x,y,z>0
cho x,y,z là số thực dương thỏa mãn xy+yz+xz=xyz
cmr \(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}+\dfrac{xz}{y^3\left(1+x\right)\left(1+z\right)}\ge\dfrac{1}{16}\)
Cho các số thực dương x,,z tm \(x^2+y^2+z^2=12 \) CMR:
\(\frac{x+y}{4+yz}+\frac{y+z}{4+xz}+\frac{x+z}{4+xy} \ge\frac{3}{2} \)
Cho x,y,z > 0 có xy+yz+xz = 3xyz CMR : \(\dfrac{x^3}{x^2+z}+\dfrac{y^3}{y^2+x}+\dfrac{z^3}{z^2+y}\ge\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
cho 3 số thực dương z;y;z thỏa mãn x+y+z<hoạc = 3/2
tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)
cho x,y,z là các số thực dương thỏa mãn xy+yz+zx\(\ge3\)
cmr \(\dfrac{x^4}{y+3z}+\dfrac{y^4}{z+3x}+\dfrac{z^4}{x+3y}\ge\dfrac{3}{4}\)
cho x, y, z >0 thỏa mãn x+y+z=1
chứng minh rằng :\(\dfrac{3}{xy+yz+xz}+\dfrac{2}{x^{2^{ }}+y^{2^{ }}+z^{2^{ }}}\)≥14
Cho các số thực dương x, y, z thỏa mãn x2 + y2 + z2 = 3. CMR \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Cho x,y,z và xyz \(\ge\) 1. CMR: \(\dfrac{x}{\sqrt{x+\sqrt{yz}}}+\dfrac{y}{\sqrt{y+\sqrt{xz}}}+\dfrac{z}{\sqrt{z+\sqrt{xy}}}\ge\dfrac{3}{\sqrt{2}}\)