Cho 3 số a # b # c. Chứng minh rằng ít nhất một trong 3 số sau đây là số dương:
x = (a + b + c)^2 - 9ab
y = (a + b + c)^2 - 9bc
z = (a + b + c)^2 - 9ac
Cho 3 số a # b # c. Chứng minh rằng ít nhất một trong 3 số sau đây là số dương:
x = (a + b + c)^2 - 9ab
y = (a + b + c)^2 - 9bc
z = (a + b + c)^2 - 9ac
cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1 và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
Chứng minh rằng ít nhất 1 trong 3 số a,b,c là bình phương của 1 số hữu tỉ
chứng minh có ít nhất 1 trong 3 số sau đây có giá trị dương
x=(a+b+c)2 -8ab
y=(a+b+c)2 -8bc
z=(a+b+c)2 -8ca
cho 3 số a,b,c # 0 thỏa mãn 2 điều kiện sau :a+b+c=2008 và 1/a + 1/b + 1/c = 1/2008. chứng tỏ rằng một trong 3 số bằng 2008
Cho x = b^2 + a
y = a^b + c
z = c^a + b
là các số nguyên tố (a,b,c thuộc N*) cmr 3 số x,y,z ít nhất có 2 số bằng nhau
a. Cho a^2 + b^2 + c^2 + 3= 2(a + b + c). Chứng minh rằng: a=b=c=1
b. Cho (a + b + c)^2 = 3(ab + ac + bc). Chứng minh rằng: a=b=c
c. Cho a^2 + b^2 + c^2 = ab + ac +bc. Chứng minh rằng: a=b=c
Câu 1:Cho dãy tỉ số:\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\).
Tính: M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Câu 2:S= abc+bca+cab (abc, bca, cab là các số hạng)
Chứng minh: S không phải là số chính phương.
Câu 3: Cho 9 đường thẳng trong đó không có 2 đường thẳng nào song song. CMR: Ít nhất cũng có 2 đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 20o.
Help me- Mai mình nộp rồi!
Cho a, b, c, d thỏa mãn
a+b=c+d
Chứng minh rằng a2+b2+c2+d2 lluluôn là tổng của 3 số chính phương