\(R_{tđ}=\dfrac{60}{9}=\dfrac{20}{3}\Omega\)
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}\)\(\Rightarrow\dfrac{1}{3R_3}+\dfrac{1}{\dfrac{3}{2}R_3}+\dfrac{1}{R_3}=\dfrac{1}{\dfrac{20}{3}}\Rightarrow R_3=13,3\Omega\)
\(\Rightarrow\left\{{}\begin{matrix}R_1=13,3\cdot3=39,9\Omega\\R_2=13,3\cdot2=26,6\Omega\end{matrix}\right.\)
Do \(R_1//R_2//R_3\)\(\Rightarrow U_1=U_2=U_3=U_m=60V\)
\(\Rightarrow I_1=\dfrac{60}{39,9}=1,504A\)
\(I_2=\dfrac{60}{26,6}=2,256A\)
\(I_3=\dfrac{60}{13,3}=4,5A\)