z, z1, z2, z3 thuộc C thỏa |z|=|z1|=|z2|=|z3|=10 (z1#z2#z3)
(z-3+4i)(thanh ngang của (z1-z2)); (z-3+4i)(thanh ngang của (z2-z3)); (z-3+4i)(thanh ngang của (z3-z1)) là thuần ảo
Tìm max P= |z-z1|^2+|z-z2|^2+|z-z3|^2
Ai cứu mình với!
z, z1, z2 thuộc C
|z-z1|+|z-z2|=2a
Gọi 2c=|z1-z2| (0 <c <a)
Chứng minh rằng:
|w+2c^2|+|w-2c^2|=4ac
với z= w/(z2-z1) + (z1+z2)/2
trên tập hợp số phức, xét phương trình \(z^2\)-2(2m-1)z+\(m^2\)=0. Có bao nhiêu giá trị của m để phương trình có hai nghiệm phân biệt z1,z2 thỏa mãn \(z1^2\)+\(z2^2\)=2
Cho số phức Z thoả mãn (1+2i)z-5= 3i tìm số phức liên hợp z 2/ cho số phức z=a+bi(a, b thuộc R) thoả mãn 3z-5z ngan -6+10i=0 .tính a-b
giả sử z là số phức thỏa mãn |iz-2-i|=3.Giá trị lớn nhất của biểu thức 2|z-4-i|+|z+5+8i| bằng
Giúp e bài này với. Cho số phức z=a+bi sao cho (z-4)/(z-4i) là số thuần ảo. Nếu số phức có môdun lớn nhất thì biểu thức P= a2 + b2 bằng
A.4 B.8 C.24 D.20
Cho số phức Z thỏa mãn căn2.|z-1|=|z+3i|. Tìm giá trị lớn nhất của biểu thức P=|z+i|+2|số phức liên hợp của z -4+7i|
Cho số phức z thoả mãn |z-2+3i|=Căn5 và biểu thức P=|z+i|^2-|z-2|^2 đạt giá trị lớn nhất . Tính |z^2/3+4i|
Cho số phức z.Tìm giá trị nhỏ nhất và lớn nhất của \(\left|z\right|\).Biết \(\left|z^2+1\right|=4\left|z\right|\)