a) Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\) (với a, b, c khác 0; b khác c). CMR \(\frac{a}{b}=\frac{a-c}{c-b}\)
b) Tìm các số nguyên n sao cho biểu thức sau là số nguyên: P = \(\frac{2n-1}{n-1}\)
c) Cho \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\). CMR: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
1) Tìm các phân số có tử số 11 nằm giữa \(-\frac{13}{2}\) và \(-\frac{13}{3}\)
2) Cho \(\frac{c}{d}\) \(< \frac{a}{b}\) < 1, a, b, c, d là những số nguyên dương. Hãy so sánh \(\frac{a}{b},\frac{c}{d}\) với \(\frac{a+d}{b+c}\)
3) hãy tìm tất cả các cặp số hữu tỉ đối nhau có mẫu là 7, nằm giữa \(-\frac{1}{3}\) và \(\frac{1}{2}\)
Cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\) . Tìm giá trị biểu thức A = \(\frac{a-b+c}{a+2b-c}\)
1/ Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:
a/ \(\frac{a+b}{b}=\frac{c+d}{d}\)
b/ \(\frac{a-b}{b}=\frac{c-d}{d}\)
2/ Cho ba tỉ số bằng nhau: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\).Tìm giá trị của mỗi tỉ số đó?
3/ Cho tỉ lệ thức: \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) . Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\)
4/ Cho 4 số: \(a_1;a_2;a_3;a_4\)thỏa mãn: \(a_2^2=a_1.a_3\)và \(a_3^2=a_2.a_4\). Chứng minh rằng: \(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)
Cho a,b,c là các số hữu tỉ khác 0 sao cho:\(\frac{a+b+c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)Tính giá trị bằng số của biểu thức M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho 3 số a, b, c khác nhau và khác 0, thoả mãn:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Tính: \(D=\frac{b+c}{a}+\frac{a+c}{b}=\frac{a+b}{c}\)
1) Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a}{b}=\frac{a-c}{b-d}\left(b,d\ne0\right)\)
2) Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(a-b\ne0;c-d\ne0\right)\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d},b\ne0,d\ne0\).Chứng tỏ rằng nếu \(a\ne\mp b,c\ne\mp d\) thì ta có các tỉ lệ thức:
\(\frac{a}{a+b}=\frac{c}{c+d},\frac{a}{a-b}=\frac{c}{c-d},\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)\(\left(a+b+c+d\ne0\right)\)Tìm M = \(\frac{2a-b}{c+d}=\frac{2b-c}{d+a}=\frac{2c-d}{a+b}=\frac{2d-a}{b+c}\)