Câu a đề là 4 vecto cộng lại bằng vecto 0 với \(O = AC\cap BD\)nha
Câu a đề là 4 vecto cộng lại bằng vecto 0 với \(O = AC\cap BD\)nha
Cho 2 hình bình hành ABCD và AB'C'D'. CMR:
a) \(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} \) với \(O = \) \(AC\cap BD\)
b) \(\bigtriangleup{BC'D}\) và \(\bigtriangleup{B'CD'}\) có cùng trọng tâm
1. Cho hình thoi ABCD cạnh a : \(\widehat{ABC}=60^0\) , AC cắt BD tại O . Tính theo a
a. \(\left|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right|\)
b. \(\left|\overrightarrow{OA}+\overrightarrow{OB}\right|+\left|\overrightarrow{OC}+\overrightarrow{OD}\right|\)
c. \(\left|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right|+\left|\overrightarrow{OD}\right|\)
Cho bình hành ABCD. Gọi MN là trung điểm của BC và AD. O là giao điểm của AC và BD. CMR:\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)
Cho hình chữ nhật ABCD. Gọi O là giao điểm của AC và BD. Mệnh đề nào dưới đây là đúng:
A. \(\overrightarrow{AC}-\overrightarrow{AD}=\overrightarrow{AB}\)
B. \(\overrightarrow{AC}=\overrightarrow{BD}\)
C. \(\left|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right|=\overrightarrow{O}\)
D. \(\overrightarrow{OA}=\overrightarrow{OB}=\overrightarrow{OC}=\overrightarrow{OD}\)
Cho tứ giác ABCD. Giả sử tồn tại O thỏa mãn:
\(\left\{{}\begin{matrix}\left|\overrightarrow{OA}\right|=\left|\overrightarrow{OB}\right|=\left|\overrightarrow{OC}\right|=\left|\overrightarrow{OD}\right|\\\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OB}+\overrightarrow{OB}=\overrightarrow{0}\end{matrix}\right.\) . Cmr ABCD là hình chữ nhật
1. Cho hình bình hành ABCD , O là tâm . Rút gọn các biểu thức sau :
a. \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\)
b. \(\overrightarrow{OA}+\overrightarrow{BD}+\overrightarrow{OC}\)
c. \(\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{CO}+\overrightarrow{OD}\)
Cho hình chữ nhật ABCD tâm O
AB = 3 , AD = 4
a / Chứng minh:
\(\overrightarrow{DO}+\overrightarrow{AO}=\overrightarrow{DC}\)
\(\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{AB}\)
\(\overrightarrow{BA}+\overrightarrow{DB}=\overrightarrow{CB}\)
b/ Tính
\(\left|\overrightarrow{AB}+\overrightarrow{CB}\right|\)
\(\left|\overrightarrow{OD}+\overrightarrow{OC}\right|\)
\(\left|\overrightarrow{DA}+\overrightarrow{OC}\right|\)
\(\left|\overrightarrow{BO}+\overrightarrow{OC}+\overrightarrow{BA}\right|\)
1. Cho hình vuông ABCD có cạnh bằng a. Độ dài \(\left|\overrightarrow{AD}+\overrightarrow{AB}\right|\) bằng:
A. 2a
B.a\(\sqrt{2}\)
C.\(\frac{a\sqrt{3}}{2}\)
D. \(\frac{a\sqrt{2}}{2}\)
2. Cho hình thang ABCD có AB song song với CD. Cho AB=2a, CD= a , O là trung điểm của AD. Khi đó
A.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\frac{3a}{2}\)
B. \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\)
C.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=2a\)
D.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=3a\)
3. Cho tam giác đều ABC cạnh a. Khi đó:
A. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\)
B.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\)
C. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\frac{a\sqrt{3}}{2}\)
D.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\)
Cho hình thang OABC . M,N lần lượt là trung điểm của OB và OC . Chứng minh rằng:
a. \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\)
b. \(\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{OC}-\overrightarrow{OB}\)
c. \(\overrightarrow{MN}=\dfrac{1}{2}\left(\overrightarrow{OC}-\overrightarrow{OB}\right)\)