Bài 2: Đồ thị hàm số y = ax^2 (a khác 0)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Mai

Cho 2 hàm số y = \(x^2\) và y = mx + 4, với m là tham số. 

1. Khi m = 3, tìm tọa độ giao điểm của 2 hàm số trên

2. C/m rằng với mọi giá trị của m, đồ thị của 2 hàm số đã cho luôn cắt nhau tại 2 điểm phân biệt: \(A_1\left(x_1;y_1\right)\) và \(A_2\left(x_2;y_2\right)\). Tìm tất cả các giá trị của m sao cho \(y_1^2+y_2^2\) = \(7^2\)

 

Akai Haruma
20 tháng 4 2021 lúc 1:38

Lời giải:

1.PT hoành độ giao điểm:

$x^2-mx-4=0(*)$ 

Khi $m=3$ thì pt trở thành: $x^2-3x-4=0$

$\Leftrightarrow (x+1)(x-4)=0$

$\Rightarrow x=-1$ hoặc $x=4$

Với $x=-1$ thì $y=(-1)^2=1$. Giao điểm thứ nhất là $(-1;1)$

Với $x=4$ thì $y=4^2=16$. Giao điểm thứ hai là $(4;16)$

2.

$\Delta (*)=m^2+16>0$ với mọi $m\in\mathbb{R}$ nên PT $(*)$ luôn có 2 nghiệm phân biệt $x_1,x_2$, đồng nghĩa với việc 2 ĐTHS luôn cắt nhau tại 2 điểm phân biệt $A(x_1,y_1); B(x_2,y_2)$

Áp dụng định lý Viet:

$x_1+x_2=m$ và $x_1x_2=-4$

Khi đó:

$y_1^2+y_2^2=49$

$\Leftrightarrow (mx_1+4)^2+(mx_2+4)^2=49$

$\Leftrightarrow m^2(x_1^2+x_2^2)+8m(x_1+x_2)=17$

$\Leftrightarrow m^2[(x_1+x_2)^2-2x_1x_2]+8m(x_1+x_2)=17$

$\Leftrightarrow m^2(m^2+8)+8m^2=17$

$\Leftrightarrow m^4+16m^2-17=0$

$\Leftrightarrow (m^2-1)(m^2+17)=0$

$\Rightarrow m^2=1$

$\Leftrightarrow m=\pm 1$


Các câu hỏi tương tự
Trần Minh Hiển
Xem chi tiết
Linh Bùi
Xem chi tiết
Linh Nguyen
Xem chi tiết
Xuân Bách Đoàn
Xem chi tiết
Hồng Thư
Xem chi tiết
Đức Huy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Vân Hà Nguyễn
Xem chi tiết
Linh Bùi
Xem chi tiết