Cho (O) và (O') cắt nhau ở A và B. Qua A kẻ 2 cát tuyến CD và EF ( C và E thuộc (O); D và F thuộc (O') ).Từ B kẻ BH vuông góc với CD, BK vuông góc với EF. biết góc BAC = góc BAF. Chứng minh tam giác BHC = tam giác BKE
Cho đường tròn tâm O đường kính AB; trên nửa đường tròn lấy điểm C sao cho AC>AB, qua C dựng đường thẳng vuông góc với OC cắt đường thẳng AB tại D. Kẻ CH vuông góc với AB (H thuộc AB), kẻ BK vuông góc với CD ( K thuộc CD); đường kính CH cắt đường thẳng BK tại E. Chứng mình 4 điểm C,H,B,K cùng thuộc 1 đường tròn'
Cho dây AB của đường tròn (O;R). Các tiếp tuyến tại A và B của (O) cắt nhau tại C. Nối tâm O với điểm H thuộc dây AB và kẻ qua H đường thẳng vuông góc với OH, đường này cắt CA ở E và CB ở D.
a) Chứng minh: OBCA nội tiếp
b) Chứng minh: OA.OD=OB.OEc
) Cho AB=R Tính diện tích phần mặt phẳng giới hạn bởi BC, AC và cung nhỏ AB theo R
Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Qua A kẻ tiếp tuyến AB, AC với dường tròn (O). M là 1 điểm trên dây BC, đường thẳng kẻ qua M vuông góc với OM cắt tia AB, AC lần lượt ở D và E. Chứng minh:
a, 4 điểm B, D, M, O cùng thuộc 1 đường tròn
b, Tứ giác OMEC nội tiếp
c, MD = ME
Cho đường tròn (O) và điểm A nằm ngoài đường tròn đó.Vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm).Kẻ BH vuông góc AO (H thuộc AO).Trên tia đối của HB lấy C sao cho HB=HC.CMR:
1)C thuộc đường tròn (O) và AC là tiếp tuyến của (O)
2)Vẽ cát tuyến AMN với đường tròn (O) (AM<AN;tia AM nằm giữa 2 tia AO và AC).CM:AM.AN=AH.AO
3)Gọi I là trung điểm của MN.Tia CI cắt đường tròn (O) tại K.CM:BK//MN
Cho đường tròn tâm O, cát tuyến (d) cắt đường tròn tại A và B, C thuộc (d) sao cho A nằm giữa C và B. từ C vẽ tiếp tuyến CN với đường tròn tại N (N thuộc cung lớn AB), CO cắt đường tròn tại E và F. Từ N hạn NI vuông góc với CO tại I. Chứng minh góc EIA = góc OAB
Cho 2 đường tròn o và o' cắt nhău tại A và B .Qua A kẻ đường tròn cát tuyến cắt đường tròn o tại C,cắt đường tròn O' tại D.Chứng minh ACD có số đo các góc không đổi,từ đó xác định vị trí của cát tuyến CD có độ dài lớn nhất