cho đường tròn tâm O bán kính R và điểm A nằm ngoài đường tròn từ A kẻ tiếp tuyến AE với đường tròn tâm (O),C,E là các tiếp điểm vẽ dây EH vuông góc OA tại M a)biết R bằng ,OM bằng 3 cm tính EH b)CM AH là tiếp tuyến của đường tròn tâm O c)đường thẳng qua O vuông góc OA cắt AH tại B vẽ tiếp tuyến BF với đường tròn tâm O (F là tiếp điểm) CM EOF thằng hàng và BF.AE=R^2
Cho đường tròn tâm O bán kính R. Từ điểm A nằm bên ngoài đường trong kẻ điểm CA, CB và các tuyến C,M,N với đường tròn tâm O AB là 2 tiếp điểm giữa C và N. Gọi H là giao điểm của CO, AB.
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại hai điểm C và D (C năm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.
a/ Tính OH. OM theo R.
b/ Chứng minh: Bốn điểm M, A, I, O cùng thuộc một đường tròn.
c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O)
Cho tam giác ABC có các cạnh BC = a, CA = b, AB = c. Gọi r là bán kính đường tròn nội tiếp, S là diện tích tam giác ABC.
a) Chứng minh : \(S=\dfrac{r\left(a+b+c\right)}{2}\)
b) Tính bán kính đường tròn nội tiếp của tam giác ABC. Biết tam giác ABC là tam giác cân có cạnh đáy bằng 16 cm, cạnh bên bằng 10 cm.
Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn . Qua A kẻ tiếp tuyến AB với đường tròn ( B là tiếp điểm ) . Vẽ tia Ax nằm giữa tia AB và tia AO cắt đường tròn (O) tại hai điểm C và D ( C nằm giữa A và D ) . Gọi M là trung điểm của dây CD , kẻ BH vuông góc với AO tại H .
a, Tính tích OH.OA theo R
b, chứng minh 4 điểm A , B , M , O cùng thuộc một đường tròn
c, Gọi E là giao điểm của OM với HB . Chứng minh ED là tiếp tuyến của đường tròn ( O;R )
cho đường tròn tâm O bán kính r và 1 điểm A sao cho OA bằng 2R, vẽ các tiếp tuyến AB và Ac với đường tròn kẻ đường kính kính BD a) chứng minh DC//OA b) cho đường trung trực của BD cắt AC và CD tại S và E. Cm OCEA là hình thang cân c) gọi I là giao điểm OA với (O). Cm SI à tiếp tuyến (O) d) tia SI cắt AB tại K. Cm tứ giác AKOS là hình thoi
Cho đường tròn tâm O, bán kính R. M là điểm nằm ngoài đường tròn. Vẽ tiếp tuyển MA của đường tròn (A là tiếp điểm). Vẽ đường kính AB của (O), MB cắt (O) tại C. Gọi D là trung điểm của dây BC. a) Chứng minh 4 điểm: M, A, O, D cùng nằm trên một đường tròn. b) Chứng minh 4Rẻ=BC BM
Cho đường tròn tâm O bán kính R, dây BC khác đường kính, Hai tiếp tuyến của đường tròn (O;R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a) Chứng minh $AO \bot BC.$
b) Cho biết $R = 15, BC = 24 (cm).$ Tính AB, OA.
c) Chứng minh BC là tia phân giác $\widehat{ABH}.$
Em cần câu c thôi ạ.
Hình vẽ.
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm o bán kính r có tia phân giác góc abc và acb lần lượt cắt đường tròn o tại e và f
CM: OF vuông góc với AB và OE vuông góc với AC
gọi M là giao điểm của OF và AB , N là giao điểm của OE và AC. CM : AMON nội tiếp