Cho đường trong tâm O bán kính 3cm và một điểm M sao cho OM=5cm. Từ M kẻ tiếp tuyên MA với đường tròn (O) (A là tiếp điểm)
a) Tính độ dài đoạn thẳng AM và giá trị của gicd AMO
b) Qua A vẽ đường thẳng vuông góc với OM tại H,cắt đường tròn(O) tại H,cắt đường tròn(O) tại B(B khác A). Chứng minh MB là tiếp tuyến của đường tròn (O)
c) Kẻ đường kính AC của đường tròn(O). Đường thẳng MC cắt đường tròn tại điểm thứ hai là D. Chứng minh góc MHD bằng góc OCD.
Cho tam giác ABC nội tiếp đường tròn(O).Tia phân giác của góc BAC cắt đường tròn(O)tại A và D.Đường tròn tâm D,bán kính DB cắt đường thẳng AB tại B và Q,cắt đường thẳng AC tại C và P. a)CMR:OA vuông góc PQ b)Gọi K là giao điểm của BC và PQ.CMR:KB.KC=KP.KQ=R^2-DK^2(với DB=R:bán kính đường tròn(D))
Cho đường tròn (O) và hai đường kính AB,CD vuông góc với nhau.Từ một điểm M tùy ý trên cung AC,vẽ tiếp tuyến với đường tròn (O) tại M.Tiếp tuyến này cắt đường thẳng CD tại S.CMR:
a)SM2=SC.SD
b)góc MSD=2 lần góc MBA
c)Gọi H là giao điểm của MD với OA và K là giao điểm của CM với AD.CMR:HA.KB=HB.KA
Cho đường tròn (O,R) và đường tròn (O',r)tiếp xúc ngoài tại A.Kẻ tiếp tuyến chung ngoài tiếp xúc (O) và (O') lần lượt tại B và C.Kẻ đường kính CD cùa đường tròn (O').Qua D kẻ đường thẳng tiếp xúc đường tròn (O) tại E.CMR:DE=DC
cho (O;R),dây BC khác dường kính .Qua O kẻ đường vuông góc với BC tai I,cắt tiếp tuyến tại B của đường tròn ở điểm A ,vẽ đường kính BD
a)CM CD//OA
b)CM AC là tiếp tuyến của đường tròn (O)
c) Đường thẳng vuông góc BD tại O cắt BC tại K.CM IK.IC
Cho \(\Delta ABC\) nhọn và nội tiếp đường tròn(O,R).Các đường cao AM,BN của \(\Delta ABC\) cắt nhau tại H(\(M\in BC,N\in AC\)).Tia AM cắt cung nhỏ BC của đường tròn(O,R) tại D.Kẻ đường kính AE của đường tròn(O,R)
a)CMR:BC//DE
b)\(CMR:S_{ABC}=\dfrac{AB.BC.CA}{4R}\)
Cho ∆ABC nhọn nội tiếp (O) có 3 đường cao AD,BE,CF cắt nhau tại H. Đường thẳng AH cắt (O) tại K. Đường kính AI của đường tròn. a, Chứng minh AB.AC=AD.AI c, đường tròn đk AH cắt (O) tại M. P là điểm chính giữa cung nhỏ BC, MP cắt BC tại G. Chứng minh HG là pg góc BHC
cho tam giác ABC cân tại A nội tiếp đường tròn (O). vẽ trung tuyến AM của tam giác ABC. gọi B' đối xứng với B qua O .Vẽ qua A vuông góc với CB' và cắt BC' tại H chứng minh AH là tiếp tuyến của đường tròn (O)