Lời giải:
Do $a,b,c\leq 2$ nên:
$(a-2)(b-2)(c-2)\leq 0$
$\Leftrightarrow abc+4(a+b+c)-2(ab+bc+ac)-8\leq 0$
$\Leftrightarrow abc+4-2(ab+bc+ac)\leq 0$
$\Leftrightarrow 2(ab+bc+ac)\geq abc+4\geq 4$ (do $abc\geq 0$)
$\Rightarrow ab+bc+ac\geq 2$ (đpcm)
Lời giải:
Do $a,b,c\leq 2$ nên:
$(a-2)(b-2)(c-2)\leq 0$
$\Leftrightarrow abc+4(a+b+c)-2(ab+bc+ac)-8\leq 0$
$\Leftrightarrow abc+4-2(ab+bc+ac)\leq 0$
$\Leftrightarrow 2(ab+bc+ac)\geq abc+4\geq 4$ (do $abc\geq 0$)
$\Rightarrow ab+bc+ac\geq 2$ (đpcm)
Cho a,b,c>0. Cmr: a) \(\frac{ab}{a^2+bc+ca}+\frac{bc}{b^2+ca+ab}+\frac{ca}{c^2+ab+bc}\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)
b) \(\frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}\le1\)
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
Cho a, b, c > 0 thỏa mãn: ab + bc + ca + abc ≤ 4. CMR: a2 + b2 + c2 + a + b + c ≥ 2(ab+bc+ca)
Cho a+b+c=0 và a,b,c≠0.CMR: \(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2-b^2}=-\dfrac{3}{2}\)
1.\(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca=3\end{matrix}\right.\) Cmr: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)
2.\(a,b,c>0\). Cmr: \(\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\le\frac{a+b+c}{4}\)
3. \(a,b,c>0\). Cmr: \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
1. cho a,b,c>0. Cmr: a) \(S=\frac{3\left(a^4+b^4+c^4\right)}{\left(a^2+b^2+c^2\right)}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)
b) \(\frac{a^3+b^3+c^3}{abc}+\frac{9\left(ab+bc+ca\right)}{a^2+b^2+c^2}\ge12\)
cho a,b,c>0 và a+b+c=3
CMR: \(\dfrac{a}{b^3+ab}+\dfrac{b}{c^3+bc}+\dfrac{c}{a^3+ca}\ge\dfrac{3}{2}\)
Cho a,b,c \(\ge\)0 .
CMR: \(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Cho a, b, c > 0 và ab + bc + ca = 1.
CMR : \(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}>\dfrac{1}{2}\)