cho 0<=a,b,c<=1 tìm giá trị nhỏ nhất của P=a+b^2019+c^2020-ab-bc-ca
xét ba số thực a,b,c thỏa mãn 0 ≤ a,b,c ≤ 2 và a+b+c = 3. Tìm giá trị nhỏ nhất của biểu thức : P = a3+ b3+ c3 + \(\dfrac{\left(ab+bc+ca\right)^3+8}{ab+bc+ca}\)
cho 0 ≤a,b,c≤1 tìm max của
P = a +b2019+c2020 - ab-bc-ac
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
Cho các số dương a,b,c thỏa mãn điều kiện a+b+c =2020
Tìm giá trị nhỏ nhất của biểu thức : P=\(\sqrt{2a^2+ab+\sqrt{2b}^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\)
tìm giá trị nhỏ nhất của biểu thức P=ab^2/(a+b) + bc^2/(b+c) + ca^2/(c+a)
biết 1/ab + 1/bc + 1/ca =3
Cho a, b, c > 0. Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{ab+bc+ca}{a^2+b^2+c^2}+\dfrac{\left(a+b+c\right)^3}{abc}\)
Cho a,b,c > 0 thoả mãn ab + bc +ca\(\ge\)3 . Tìm giá trị nhỏ nhất của: \(P=\frac{a^3}{1+b}+\frac{b^3}{1+c}+\frac{c^3}{1+a}\)
Cho 0 < a,b,c < 1 và ab+bc+ca = 1. Tìm giá trị nhỏ nhất của: P =\(\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)