Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Băng Băng

Chm bdt: \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)

Doctor Strange
9 tháng 11 2019 lúc 22:50

BĐT tương đương vs

(\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\))^2\(\ge\left(a+c\right)^2+\left(b+d\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2ac+2bd\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)( BĐT bunyakovsky ) luôn đúng

\(\Rightarrow\) đpcm

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phạm Băng Băng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Phung Minh Quan
Xem chi tiết
yeens
Xem chi tiết
Lâm ngọc mai
Xem chi tiết
Agami Raito
Xem chi tiết
Võ Thùy Trang
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Khánh Ngọc
Xem chi tiết