Câu 1:
- Với \(x< 1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT vô nghiệm
- Với \(x\ge1\) hai vế ko âm, bình phương:
\(\left(-2x^2+4x-1\right)^2< \left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2-\left(-2x^2+4x-1\right)^2>0\)
\(\Leftrightarrow\left(2x^2-3x\right)\left(-2x^2+5x-2\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}0< x< \frac{1}{2}\\\frac{3}{2}< x< 2\end{matrix}\right.\) \(\Rightarrow\frac{3}{2}< x< 2\)
Câu 2:
- Với \(1\le x\le2\Leftrightarrow-x^2+3x-2\ge2x-x^2\)
\(\Leftrightarrow x\ge2\Rightarrow x=2\)
- Với \(\left[{}\begin{matrix}x< 1\\x>2\end{matrix}\right.\) \(\Leftrightarrow x^2-3x+2\ge2x-x^2\)
\(\Leftrightarrow2x^2-5x+2\ge0\Rightarrow\left[{}\begin{matrix}x\le\frac{1}{2}\\x\ge2\end{matrix}\right.\)
Kết hợp lại ta được nghiệm của BPT: \(\left[{}\begin{matrix}x\le\frac{1}{2}\\x\ge2\end{matrix}\right.\)