Chúng ta coi 2022 điểm như 1 tập hợp A có 2022 phần tử.
Mỗi cách chọn 1 tập con gồm \(k\ge3\) phần tử của A sẽ cho 1 đa giác
Do đó, số đa giác được tạo ra đúng bằng số tập con có nhiều hơn 2 phần tử của A
Số tập con của A: \(2^{2022}\) tập
Số tập con có 0 phần tử (rỗng): 1 tập
Số tập con có 1 phần tử: \(C_{2022}^1=2022\) tập
Số tập con có 2 phần tử: \(C_{2022}^2=2043231\)
Do đó số đa giác là:
\(2^{2022}-\left(1+2022+2043231\right)=2^{2022}-2045254\)