Câu 1:Tìm giá trị nhỏ nhất của biểu thức P=\(\left|x-2012\right|+\left|x-2013\right|\) với x là số tự nhiên
Câu 2:Cho tam giác ABC cân tại A và có cả 3 góc đều là góc nhọn.
a)Về phía ngoài của tam giác vẽ tam giác ABE vuông cân tại B. Gọi H là trung điểm của BC, trên tia đối của tia AH lấy điểm I sao cho AI=BC. Chứng minh 2 tam giác ABI và BEC bằng nhau và \(BI\perp CE.\)
b)Tia phân giác của các góc ABC và BDC cắt AC,BC lần lượt tại D,M.Phân gác của góc BDA cắt BC tại N.Chứng minh rằng: BD=\(\dfrac{1}{2}MN\)
Câu 3: Cho S=\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)và P=\(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\).
Tính \(\left(S-P\right)^{2013}\)
Câu 3:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(\Rightarrow S=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}-\frac{1}{4}-...-\frac{1}{2012}\right)\)
\(\Rightarrow S=\left(1+\frac{1}{2}+...+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(\Rightarrow S=\left(1+\frac{1}{2}+...+\frac{1}{2013}\right)-1-\frac{1}{2}-...-\frac{1}{2012}\)
\(\Rightarrow S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)
\(\Rightarrow S=P\)
\(\Rightarrow S-P=0\)
\(\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\)
Vậy \(\left(S-P\right)^{2013}=0\)