Câu 1: Xét biểu thức
\(A=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)
a) Tìm điều kiện của a và b để A có nghĩa. Rút gọn A.
b) Cho giá trị của biểu thức A sau khi đã rút gọn bằng \(\frac{b+10}{b-10}\left(b\ne10\right)\). Chứng minh rằng \(\frac{a}{b}=\frac{9}{10}\)
Câu 2: Rút gọn
a) \(A=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
Câu 3: Giải phương trình và hệ phương trình sau
a) (x - 2)2 - (x + 3)2 = 2(x - 5)
b) \(\left\{{}\begin{matrix}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{matrix}\right.\)
Câu 4: Cho nửa đường tròn (O) đường kính AB = 2R. Kẻ hai tiếp tuyến Ax và By của mỗi đường tròn (O) và tiếp tuyến thứ ba tiếp xúc với (O) tại điểm M và cắt Ax tại D, cắt By tại E.
a) CM: ΔDOE là tam giác vuông.
b) CM: AD.BE = R2.
c) Xác định vị trí của M trên nửa đường tròn (O) sao cho diện tích ΔDOE đạt giá trị nhỏ nhất.
Câu 5: Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì: n là bội số của 24.
Câu 6: Chứng minh rằng với mọi số thực a, b, c ta có các bất đẳng thức:
a) a4 + b4 ≥ a3b + ab3.
b) a2 + b2 +c2 ≥ ab + bc + ca.
Help me!!!
Thanks trc
6.
a/ \(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b/ \(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
Câu 5:
\(2n+1\) lẻ nên là SCP lẻ
Đặt \(2n+1=\left(2k+1\right)^2\) với k tự nhiên
\(\Rightarrow2n+1=4k^2+4k+1\Rightarrow n=2k\left(k+1\right)\)
\(\Rightarrow n⋮4\) (do \(k\left(k+1\right)\) là tích 2 STN liên tiếp nên chia hết cho 2)
\(\Rightarrow n+1\) lẻ \(\Rightarrow n+1=\left(2a+1\right)^2\Rightarrow n=4a\left(a+1\right)\Rightarrow n⋮8\)
Mặt khác \(n+1\) và \(2n+1\) là các SCP nên chỉ có thể chia hết cho 3 hoặc chia 3 dư 1
\(n+1+2n+1=3n+2\) chia 3 dư 2 \(\Rightarrow n+1\) và \(2n+1\) đều chia 3 dư 1
\(\Rightarrow n⋮3\Rightarrow n⋮24\) (do 3 và 8 nguyên tố cùng nhau)
3.
\(x^2-4x+4-\left(x^2+6x+9\right)=2x-10\)
\(\Leftrightarrow-10x-5=2x-10\)
\(\Leftrightarrow12x=5\)
b. \(\Leftrightarrow\left\{{}\begin{matrix}17\left(x-y\right)+7\left(2x+y\right)=833\\19\left(4x+y\right)+5\left(y-7\right)=1425\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}31x-10y=833\\76x+24y=1460\end{matrix}\right.\)
Bấm máy
1. ĐKXĐ: \(\left\{{}\begin{matrix}a;b\ge0\\a\ne9\end{matrix}\right.\)
\(A=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{a}\left(\sqrt{b}+2\right)-3\left(\sqrt{b}+2\right)}-\frac{6-\sqrt{ab}}{\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)}\)
\(=\frac{2\sqrt{a}+3\sqrt{b}}{\left(\sqrt{a}-3\right)\left(\sqrt{b}+2\right)}-\frac{6-\sqrt{ab}}{\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}=\frac{\left(\sqrt{a}+3\right)\left(2\sqrt{a}+3\sqrt{b}\right)+\left(\sqrt{ab}-6\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}\)
\(=\frac{2a+9\sqrt{b}+a\sqrt{b}+18}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}=\frac{a\left(\sqrt{b}+2\right)+9\left(\sqrt{b}+2\right)}{\left(a-9\right)\left(\sqrt{b}+2\right)}\)
\(=\frac{\left(a+9\right)\left(\sqrt{b}+2\right)}{\left(a-9\right)\left(\sqrt{b}+2\right)}=\frac{a+9}{a-9}\)
b .
\(\frac{a+9}{a-9}=\frac{b+10}{b-10}\Leftrightarrow\frac{a-9+18}{a-9}=\frac{b-10+20}{b-10}\)
\(\Leftrightarrow1+\frac{18}{a-9}=1+\frac{20}{b-10}\Leftrightarrow\frac{18}{a-9}=\frac{20}{b-10}\)
\(\Leftrightarrow18\left(b-10\right)=20\left(a-9\right)\Leftrightarrow18b=20a\Leftrightarrow\frac{a}{b}=\frac{9}{10}\)
2.
\(A=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}=3\)
\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}=\frac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}.\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{3}+1}=\frac{\sqrt{6+2\sqrt{4-2\sqrt{3}}}}{\sqrt{3}+1}=\frac{\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{6+2\sqrt{3}-2}}{\sqrt{3}+1}=\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}=1\)