Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Châu Mỹ Linh

Câu 1: Tính giá trị biểu thức: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}\) khi x = 9

Câu 2: Cho biểu thức P = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\) với \(x>0,x\ne1\)

a) Chứng minh \(P=\frac{\sqrt{x}+1}{\sqrt{x}}\)

b) Tìm giá trị của x để \(2P=2\sqrt{x}+5\)

Nguyễn Thanh Hằng
5 tháng 8 2020 lúc 21:10

1/ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Thay \(x=9\) vào biểu thức A ta có :

\(A=\frac{\sqrt{9}+1}{\sqrt{9}-1}=\frac{3+1}{3-1}=2\)

Vậy...

2/ ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Ta có :

\(P=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\left(\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)

Vậy....

b/ Ta có :

\(2P=2\sqrt{x}+5\)

\(\Leftrightarrow\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}}=2\sqrt{x}+5\)

\(\Leftrightarrow2\sqrt{x}+2=2x+5\sqrt{x}\)

\(\Leftrightarrow2x+3\sqrt{x}-2=0\)

\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)=0\)

\(\Leftrightarrow2\sqrt{x}-1=0\)

\(\Leftrightarrow x=\frac{1}{4}\)

Vậy..

Miinhhoa
5 tháng 8 2020 lúc 22:41

Câu 1 :

\(A=\frac{\sqrt{x}+1}{\sqrt{x-1}}\) khi x = 9

tại x = 9 thay vào A ta được : \(\frac{\sqrt{9}+1}{\sqrt{9}-1}\) = \(\frac{3+1}{3-1}=\frac{4}{2}=2\)

Câu 2 :

a, Ta có : P = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

= \(\left(\frac{x-2}{\sqrt{x}.\sqrt{x}+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\left(\frac{x-2}{\sqrt{x}\left(\sqrt{x+2}\right)}+\frac{1}{\sqrt{x}+2}\right)\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

= \(\left(\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

= \(\left(\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

=\(\frac{x-2+2\sqrt{x}-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}\) => đpcm


Các câu hỏi tương tự
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
NGuyễn Văn Tuấn
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Đỗ Thị Minh Anh
Xem chi tiết
Sang Mi Choo
Xem chi tiết
Đỗ Thị Minh Anh
Xem chi tiết
Triệu Tử Phong
Xem chi tiết
Đỗ Thị Minh Anh
Xem chi tiết