Câu 1) Tìm tất cả các giá trị thực của tham số m sao cho phương trình \(\sqrt{x^2-4x+5}\)= m + 4x - x2 có đúng 2 nghiệm dương?
Câu 2) Tìm tất cả các giá trị thực của tham số m sao cho mọi nghiệm của bất phương trình x2-3x+2 ≤ 0 cũng là nghiệm của bất phương trình mx2 + (m+1)x + m +1 ≥ 0
Câu 3) Tìm tất cả các giá trị thực của tham số m sao cho phương trình log2 3 x + \(\sqrt{log_3^2x+1}\)-2m -1=0 có ít nhất một nghiệm trên đoạn [1;3\(\sqrt{3}\)]
Câu 1:
\(\Leftrightarrow x^2-4x+5+\sqrt{x^2-4x+5}-5=m\)
Đặt \(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}=a\ge1\)
\(\Rightarrow a^2+a-5=m\) (1)
Xét phương trình: \(x^2-4x+5=a^2\Leftrightarrow x^2-4x+5-a^2=0\)
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=5-a^2\end{matrix}\right.\)
\(\Rightarrow\) Nếu \(5-a^2>0\Rightarrow1\le a< \sqrt{5}\) thì pt có 2 nghiệm dương
Nếu \(5-a^2\le0\) \(\Leftrightarrow a\ge\sqrt{5}\) thì pt có 1 nghiệm dương
Vậy để pt đã cho có đúng 2 nghiệm dương thì: (1) có đúng 1 nghiệm thỏa mãn \(1\le a< \sqrt{5}\) hoặc có 2 nghiệm pb \(a_1>a_2\ge\sqrt{5}\)
Xét \(f\left(a\right)=a^2+a-5\) với \(a\ge1\)
\(f'\left(a\right)=0\Rightarrow a=-\frac{1}{2}< 1\Rightarrow f\left(a\right)\) đồng biến \(\forall a\ge1\) \(\Rightarrow y=m\) chỉ có thể cắt \(y=f\left(a\right)\) tại nhiều nhất 1 điểm có hoành độ \(a\ge1\)
\(f\left(1\right)=-3\) ; \(f\left(\sqrt{5}\right)=\sqrt{5}\)
\(\Rightarrow\) Để pt có 2 nghiệm pb đều dương thì \(-3\le m< \sqrt{5}\)
Câu 2:
\(x^2-3x+2\le0\Leftrightarrow1\le x\le2\) (1)
Ta có: \(mx^2+\left(m+1\right)x+m+1\ge0\)
\(\Leftrightarrow m\left(x^2+x+1\right)\ge-x-1\)
\(\Leftrightarrow m\ge\frac{-x-1}{x^2+x+1}=f\left(x\right)\) (2)
Để mọi nghiệm của (1) là nghiệm của (2) \(\Leftrightarrow\left(2\right)\) đúng với mọi \(x\in\left[1;2\right]\)
\(\Rightarrow m\ge\max\limits_{\left[1;2\right]}f\left(x\right)\)
\(f'\left(x\right)=\frac{-\left(x^2+x+1\right)+\left(2x+1\right)\left(x+1\right)}{\left(x^2+x+1\right)^2}=\frac{x^2+2x}{\left(x^2+x+1\right)^2}>0\) \(\forall x\in\left[1;2\right]\)
\(\Rightarrow f\left(x\right)\) đồng biến \(\Rightarrow\max\limits_{\left[1;2\right]}f\left(x\right)=f\left(2\right)=-\frac{3}{7}\)
\(\Rightarrow m\ge-\frac{3}{7}\)
Câu 3:
ĐKXĐ: \(x>0\)
\(log^2_3x+1+\sqrt{log_3^2x+1}-2=2m\)
Đặt \(\sqrt{log^2_3x+1}=a\) \(\Rightarrow1\le a\le2\)
Phương trình trở thành: \(a^2+a-2=2m\)
Xét \(f\left(a\right)=a^2+a-2\) trên \(\left[1;2\right]\)
\(f'\left(a\right)=2a+1=0\Rightarrow a=-\frac{1}{2}< 1\Rightarrow f\left(a\right)\) đồng biến trên \(\left[1;2\right]\)
\(\Rightarrow f\left(1\right)\le f\left(a\right)\le f\left(2\right)\Rightarrow0\le f\left(a\right)\le4\)
\(\Rightarrow0\le2m\le4\Rightarrow0\le m\le2\)