Chương 4: SỐ PHỨC

Huỳnh Lê Đạt

Câu 1: Cho số phức z thỏa \(\left|z\right|\le2\) . Giá trị nhỏ nhất của biểu thức:\(p=2\left|z+1\right|+2\left|z-1\right|+\left|z-\overline{z}-4i\right|\)bằng bao nhiêu.

Akai Haruma
11 tháng 4 2018 lúc 22:55

Lời giải:

Đặt \(z=a+bi\). Ta có: \(|z|\leq 2\Leftrightarrow a^2+b^2\leq 4\)

Có:

\(p=2|z+1|+2|z-1|+|z-\overline{z}-4i|\)

\(=2|(a+1)+bi|+2|(a-1)+bi|+|(a+bi)-(a-bi)-4i|\)

\(=2\sqrt{(a+1)^2+b^2}+2\sqrt{(a-1)^2+b^2}+\sqrt{(2b-4)^2}\)

\(=2\sqrt{(a+1)^2+b^2}+\sqrt{(a-1)^2+b^2}+4-2b\)

(do \(a^2+b^2\leq 4\Rightarrow b^2\leq 4\Rightarrow b\leq 2\Rightarrow \sqrt{(2b-4)^2}=4-2b\) )

\(\Leftrightarrow p=2[\sqrt{(a+1)^2+b^2}+\sqrt{(a-1)^2+b^2}-b+2]\)

Theo BĐT Mincopxky :

\(p\geq 2(\sqrt{(a+1+1-a)^2+(b+b)^2}-b+2)\)

\(\Leftrightarrow p\geq 2(2\sqrt{b^2+1}-b+2)\)

Xét \(f(b)=2\sqrt{b^2+1}-b+2\) với \(b\in [-2;2]\)

Có: \(f'(b)=\frac{2b}{\sqrt{b^2+1}}-1=0\Leftrightarrow b=\pm \frac{\sqrt{3}}{3}\)

Lập bảng biến thiên ta suy ra \(f(b)_{\min}=f(\frac{\sqrt{3}}{3})=2+\sqrt{3}\)

\(\Rightarrow p\geq 2f(b)\geq 2(2+\sqrt{3})\)

Vậy \(p_{\min}=4+2\sqrt{3}\)

Dấu bằng xảy ra khi \(b=\frac{\sqrt{3}}{3}; \frac{a+1}{1-a}=\frac{b}{b}=1\Rightarrow a=0\)


Các câu hỏi tương tự
haudreywilliam
Xem chi tiết
AllesKlar
Xem chi tiết
AllesKlar
Xem chi tiết
AllesKlar
Xem chi tiết
Hoang Nguyen Dat
Xem chi tiết
AllesKlar
Xem chi tiết
Trần Lệ Thuỷ
Xem chi tiết
Nguyễn Tùng Anh
Xem chi tiết
Pham Tien Dat
Xem chi tiết