Chương 4: SỐ PHỨC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huỳnh Lê Đạt

Câu 1: Cho số phức z thỏa \(\left|z\right|\le2\) . Giá trị nhỏ nhất của biểu thức:\(p=2\left|z+1\right|+2\left|z-1\right|+\left|z-\overline{z}-4i\right|\)bằng bao nhiêu.

Akai Haruma
11 tháng 4 2018 lúc 22:55

Lời giải:

Đặt \(z=a+bi\). Ta có: \(|z|\leq 2\Leftrightarrow a^2+b^2\leq 4\)

Có:

\(p=2|z+1|+2|z-1|+|z-\overline{z}-4i|\)

\(=2|(a+1)+bi|+2|(a-1)+bi|+|(a+bi)-(a-bi)-4i|\)

\(=2\sqrt{(a+1)^2+b^2}+2\sqrt{(a-1)^2+b^2}+\sqrt{(2b-4)^2}\)

\(=2\sqrt{(a+1)^2+b^2}+\sqrt{(a-1)^2+b^2}+4-2b\)

(do \(a^2+b^2\leq 4\Rightarrow b^2\leq 4\Rightarrow b\leq 2\Rightarrow \sqrt{(2b-4)^2}=4-2b\) )

\(\Leftrightarrow p=2[\sqrt{(a+1)^2+b^2}+\sqrt{(a-1)^2+b^2}-b+2]\)

Theo BĐT Mincopxky :

\(p\geq 2(\sqrt{(a+1+1-a)^2+(b+b)^2}-b+2)\)

\(\Leftrightarrow p\geq 2(2\sqrt{b^2+1}-b+2)\)

Xét \(f(b)=2\sqrt{b^2+1}-b+2\) với \(b\in [-2;2]\)

Có: \(f'(b)=\frac{2b}{\sqrt{b^2+1}}-1=0\Leftrightarrow b=\pm \frac{\sqrt{3}}{3}\)

Lập bảng biến thiên ta suy ra \(f(b)_{\min}=f(\frac{\sqrt{3}}{3})=2+\sqrt{3}\)

\(\Rightarrow p\geq 2f(b)\geq 2(2+\sqrt{3})\)

Vậy \(p_{\min}=4+2\sqrt{3}\)

Dấu bằng xảy ra khi \(b=\frac{\sqrt{3}}{3}; \frac{a+1}{1-a}=\frac{b}{b}=1\Rightarrow a=0\)