a: \(A=\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{ab}}\cdot\left(\dfrac{a\sqrt{a}+a\sqrt{b}-b\sqrt{a}-b\sqrt{b}-a\sqrt{a}+b\sqrt{b}}{a-b}\right)\)
\(=\dfrac{1}{\sqrt{ab}}\cdot\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}=1\)
b: \(=\dfrac{\left(a+\sqrt{a}+1+\sqrt{a}\right)\left(a-\sqrt{a}-\sqrt{a}+1\right)}{\left(a-1\right)\left(a+1\right)}\)
\(=\dfrac{\left(a-1\right)^2}{\left(a-1\right)\left(a+1\right)}=\dfrac{a-1}{a+1}\)