Rút gọn căn bậc hai theo hằng đẳng thức:
a)\(\left(4\sqrt{2}+\sqrt{30}\right).\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)
b)\(2.\left(\sqrt{10}-\sqrt{2}\right).\left(4+\sqrt{6-2\sqrt{5}}\right)\)
c)\(\left(7+\sqrt{14}\right).\sqrt{9-2\sqrt{14}}\)
d)\(\sqrt{\dfrac{289+4\sqrt{72}}{16}}\)
e) \(\left(\sqrt{21}+7\right).\sqrt{10-2\sqrt{21}}\)
f)\(\sqrt{2-\sqrt{3}.\left(\sqrt{6}+\sqrt{2}\right)}\)
g) \(\sqrt{2}\sqrt{8+3\sqrt{7}}\)
h) \(\sqrt{11+6\sqrt{2}}\)
\[D=\left ( \frac{1}{3\sqrt{x}-6} +\frac{1}{x-2\sqrt{x}}\right )\left ( \frac{1}{6} +\frac{1}{2\sqrt{x}}\right )\\ D=\left ( \frac{1}{3\left ( \sqrt{x}-2 \right )} +\frac{1}{\sqrt{x}\left ( \sqrt{x}-2 \right )}\right ).\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\sqrt{x}+3}{3\sqrt{x}\left ( \sqrt{x}-2 \right )}.\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\left ( \sqrt{x}+3 \right )^{2}}{18x\left ( \sqrt{x}-2 \right )}\\ D=\frac{x+6\sqrt{x}+9}{18x\sqrt{x}-36x}\]
A/ Đúng
B/ Sai
Chứng minh rằng:
a)\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\left(\sqrt{5-2\sqrt{6}}\right)}{9\sqrt{3}-11\sqrt{2}}\) là số nguyên
b)\(\left(\sqrt{3}-1\right).\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
1. làm tính nhân :
a)\(\left(\sqrt{12}-3\sqrt{75}\right).\sqrt{3}\)
b) \(\left(\sqrt{18}-4\sqrt{72}\right).2\sqrt{2}\)
c) \(\left(\sqrt{6}-2\right)\left(\sqrt{6}+7\right)\)
d) \(\left(\sqrt{3}+2\right)\left(\sqrt{3}-5\right)\)
2) thực hien phep tinh :
a) \(\left(\sqrt{48}-\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)
b) \(\left(\sqrt{20}-3\sqrt{45}+6\sqrt{180}\right):\sqrt{5}\)
c) \(\left(2\sqrt{20}-3\sqrt{45}+4\sqrt{80}\right):\sqrt{5}\)
d) \(\left(3\sqrt{24}+4\sqrt{54}-5\sqrt{96}\right):\sqrt{6}\)
e)\(\left(\sqrt{x^2y}-\sqrt{xy^2}\right):\sqrt{xy}\)
f) \(\left(\sqrt{a^3b}+\sqrt{ab^3}-ab\right):\sqrt{ab}\)
g) \(\left(3\sqrt{x^2y}-4\sqrt{xy^2}+5xy\right):\sqrt{xy}\)
h) \(\left(\sqrt{a^3b}+\sqrt{ab^3-3\sqrt{ab}}\right):\sqrt{ab}\)
\(\left(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\right)\times\left(3\sqrt{\dfrac{2}{3}}-\sqrt{2}-\sqrt{6}\right)\times\left(-\sqrt{6}\right)\)
thực hiện phép tính
A=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
B=\(\left(5+2\sqrt{6}\right)\cdot\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}\)
Tính:
a) \(A=\left(\sqrt{6}+\sqrt{10}\right)-\sqrt{4-\sqrt{15}}\)
b) \(B=\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{15}}\)
c) \(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
bài 1 Với giá trị nào của x thì căn thức sau có nghĩa:
a) \(\sqrt{\left(x-2\right)\left(x-6\right)}\)
b) \(\sqrt{1-x^2}\)
\(\sqrt{-5x-10}\)
Rút gọn:
a) \(2\sqrt{98}-3\sqrt{18}+\dfrac{1}{2}\sqrt{32}\)
b)\(\left(5\sqrt{2}+2\sqrt{5}\right).\sqrt{5}-\sqrt{250}\)
c)\(\left(2\sqrt{3}-5\sqrt{2}\right).\sqrt{3}-\sqrt{36}\)
d)\(3\sqrt{48}+2\sqrt{27}-\dfrac{1}{3}\sqrt{243}\)
e) \(6\sqrt{\dfrac{1}{3}}+\dfrac{9}{\sqrt{3}}-\dfrac{2}{\sqrt{3}-1}\)
f)\(4\sqrt{\dfrac{1}{2}}-\dfrac{6}{\sqrt{2}}\dfrac{2}{\sqrt{2}+1}\)