Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hải Lâm

Các số a, b, c thỏa mãn: \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\)

Tìm giá trị nhỏ nhất của biểu thức : \(M=ab+bc+ca-\left(a+b+c\right)+1\)

Trần Quốc Khanh
9 tháng 3 2020 lúc 13:42

Theo đề, ta có \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\).Thay vào M đc

\(M=3a^2-3a+1=3\left(a^2-a+\frac{1}{4}\right)+\frac{1}{4}=3\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Vậy MIN M là 1/4 khi a=b=c=1/2

Khách vãng lai đã xóa
Hoàng Thị Ánh Phương
9 tháng 3 2020 lúc 15:38

Ôn tập cuối năm phần số học

Khách vãng lai đã xóa