Hàm số \(y=x+m\left(\sin x+\cos x\right)\)đồng biến trên \(R\) khi và chỉ khi:
\(y'=1+m\left(\cos x-\sin x\right)\ge0,\forall x\in R\)
\(\Leftrightarrow\min\limits\left(1+m\left(\cos x-\sin x\right)\right)\ge0,\forall x\in R\)(1)
Trước tiên ta sẽ đi tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: \(g\left(x\right)=\sin x-\cos x\)
Đặt \(t=\sin x+\cos x\Rightarrow2\sin x.\cos x=t^2-1\)
Ta có \(\left(g\left(x\right)\right)^2=\left(\cos x-\sin x\right)^2=2-t^2\le2\Rightarrow-\sqrt{2}\le g\left(x\right)\le\sqrt{2}\)
Do đó\(\left|m\left(\cos x-\sin x\right)\right|=\left|m\right|.\left|\cos x-\sin x\right|\le\left|m\right|\sqrt{2}\)
\(\Rightarrow-\sqrt{2}\left|m\right|\le m\left(\cos x-\sin x\right)\le\sqrt{2}\left|m\right|\)
Do đó (1)\(\Leftrightarrow1-\sqrt{2}\left|m\right|\ge0\Leftrightarrow\dfrac{-1}{\sqrt{2}}\le m\le\dfrac{1}{\sqrt{2}}\)