1/Cho (a2 - bc)( b- abc) = (b2 -ac)(a-abc)
a/ Chứng minh rằng: 1/a + 1/b + 1/c = a+b+c
b/ Chứng tỏ : a(b-c)(b+c-a)2 + c(a-b)(a+b-c)2 = b(a-c)(a+c-b)
2/ Với x là 1 số thực bất kỳ. Chứng minh rằng x-x2 +1: x2 -1 <1
3/ Cho các số x,y thỏa mãn : Chứng minh rằng x2 +y2 +(1+xy : x+y)2 >=2
Cho a, b, c là các số thực dương thỏa mãn 2(a2 +b2 +c2) = a+b+c+3. Chứng minh rằng:
\(\dfrac{1}{\sqrt{a^4+a^2+1}}\)+ \(\dfrac{1}{\sqrt{b^4+b^2+1}}\)+ \(\dfrac{1}{\sqrt{c^4+c^2+1}}\) \(\ge\sqrt{3}\)
mng giúp mình nhé, cảm ơnn
Cho a,b,c>0. CMR: 3(a2+b2+c2)≥(a+b+c)2≥3(ab+bc+ca)
1>chứng tỏ rằng với bất kì giá trị nào của n thì các bất đẳng thức sau luôn luôn đúng
a/ 3(m+1)+m< 4(2+m)
b/ (m-2)2 > m(m-4)
2>chứng minh rằng các bất đẳng thức sau là đúng
a/ b(b+a)≥ ab
b/ a2-ab+b2≥ ab
3/chứng minh rằng bất đẳng thức sau luôn luông đúng
a/10a2-5a+1≥ a2+a
b/a2-a≤ 50a2-15a+1
4/giả sử n là số tự nhiên.Hãy chứng tỏ rằng:
\(\frac{1}{2}\)+\(\frac{1}{3\sqrt{2}}\)+\(\frac{1}{4\sqrt{3}}\)+....+\(\frac{1}{\left(n+1\right)\sqrt{n}}\)<2
5>chứng tỏ rằng với mọi số a,b,c,d ta có:
(ab+cd)2≤ (a2+c2)(b2+d2)
Câu 1: Giải và biểu diễn phương trình sau:
a) -2x + 1 \(\ge\) 7
b) \(\frac{3x-1}{4}\) < 2
c) x (x-5) < (x-3) (x+3)
d) |4x| < 3x - 2
Câu 2 :
a) Cho m<n chứng tỏ: 2m + 1< 2n + 1
b) Với giá trị nào cảu x thì giá trị phân thức \(\frac{x-3}{3}\) nhỏ hơn \(\frac{x-2}{4}\)
(mink đag cần gấp)
Câu 1:
a) Cho m<n chứng tỏ: 2m + 1< 2n + 1
b) Với giá trị nào cảu x thì giá trị phân thức \(\frac{x-3}{3}\) nhỏ hơn \(\frac{x-2}{4}\)
(mink đag cần gấp)
Bài 1: Cho a, b, c thõa mãn 0<a<=b<=c. CMR:
a/b+b/c+c/a>=b/a+c/b+a/c
Bài 2: Cho a, b, c>0 CMR
a/bc+b/ca+c/ab>=2(1/a+1/b+1/c)
Bài 3: CMR với mọi x, y ta có
x^3/x^2+xy+y^2>=(2x-y)/3
Bài 1: Cho a, b, c>0, cmr:
a/bc+b/ca+c/ab>=2(1/a+1/b-1/c)
Bài2: CMR với mọi x, y, ta có
x^3/x^2+xy+y^2>=2x-y/3
lm ơn lm giùm mk ạ
thanks trc
Bài 1: Cho x+y+z+xy+xz+yz=6
Chứng minh x2+y2+z2≥3
Bài 2: Chứng minh 2(a4+b4)≥ab3+a3b+2a2b2 với mọi a,b