Các bn có dạng toán lớp 8 nào thường gặp khi thi HSG toán cho mk tham khảo với. Bn nào thi hsg 8 rồi cho mk xin đề nhé, mk đang cần gấp. Thanks mấy bn trước nha, giúp mk vs ^-^
cho các số a, b khác nhau thỏa mãn a^3+b^3-30ab=2021 .Hỏi tổng a+b không thể nhận giá trị nào ?
(Các bạn chỉ cần làm ý c và d cho mk thôi!)
Cho tam giác ABC có 3 góc nhọn, trực tâm H. Qua B vẽ đường thẳng vuông góc với AB, qua C vẽ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau tại D
a) CM: tứ giác BHCD là hình bình hành
b) Gọi M là trung điểm BC, O là trung điểm AD. CM: M là trung điểm của HD và AH=2OM
c) Tìm điều kiện của tam giác ABC để tứ giác BHCD là hình chữ nhật
d) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm H, G, O thẳng hàng
Cho tam giác MNP, trung tuyến MK. G là điểm nằm giữa M và K sao cho: MG/MK=1/3. Một đường thẳng đi qua G cắt các cạnh MN, MP thứ tự tại T và S (T, S không trùng với đỉnh của tam giác MNP). CM: MN/MT+MP/MS=6
(Làm hộ mk ý b nha)
Cho tam giác ABC nhọn, AB>AC có các đường cao AD, BE, CF cắt nhau tại H. Gọi P, Q lần lượt là hình chiếu vuông góc của E và F trên BC. ĐƯờng thẳng qua H vuông góc với AD cắt EP và FQ lần lượt tại M và N.
a) Chứng minh: Tam giác EMH đồng dạng với tam giác CPE.
b) HM.QF=HN.EP
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2