Áp dụng bđt \(\left|a\right|+\left| b\right|\ge\left|a+b\right|\) , dấu "=" xảy ra khi a,b cùng dấu.
a) Ta có \(C=\left|x-1\right|+\left|x-4\right|=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=3\)
Dấu "=" xảy ra khi \(1\le x\le4\)
Vậy Min C = 3 tại \(1\le x\le4\)
b) Ta có : \(D=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)
\(=\left(\left|-x-\frac{1}{2}\right|+\left|x+\frac{1}{4}\right|\right)+\left|x+\frac{1}{3}\right|\)
Áp dụng bđt trên , ta được \(\left|-x-\frac{1}{2}\right|+\left|x+\frac{1}{4}\right|\ge\left|-x-\frac{1}{2}+x+\frac{1}{4}\right|=\frac{1}{4}\)
Lại có \(\left|x+\frac{1}{3}\right|\ge0\)
\(\Rightarrow D\ge\frac{1}{4}+0=\frac{1}{4}\). Dấu "=" xảy ra khi \(\begin{cases}-\frac{1}{4}\le x\le-\frac{1}{3}\\x+\frac{1}{3}=0\end{cases}\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy Min D = \(\frac{1}{4}\Leftrightarrow x=-\frac{1}{3}\)