Ta có:\(A=\dfrac{4}{ab}+\dfrac{5}{a^2+b^2}\)
\(A=\dfrac{5}{2ab}+\dfrac{5}{a^2+b^2}+\dfrac{3}{2ab}\)
Ta cm bđt:\(2ab\le\dfrac{\left(a+b\right)^2}{2}\)(tự cm) và \(\dfrac{x_1^2}{a_1}+\dfrac{x_2^2}{a_2}\ge\dfrac{\left(x_1+x_2\right)^2}{a_1+a_2}\)(cauchy-schwarz)
\(\Rightarrow\dfrac{3}{2ab}\ge\dfrac{3}{\dfrac{9}{2}}=\dfrac{2}{3}\)(1)
Áp dụng:\(\Rightarrow A\ge\dfrac{\left(\sqrt{5}+\sqrt{5}\right)^2}{a^2+2ab+b^2}+\dfrac{2}{3}\)
\(A\ge\dfrac{20}{9}+\dfrac{2}{3}=\dfrac{26}{9}\)
Dấu "=" xảy ra khi a=b=1,5