1.\(\frac{x+1}{2013}\)+\(\frac{x+2}{2012}\)=\(\frac{x+3}{2011}\)+\(\frac{x+4}{2010}\)
⇔\(\frac{x+1}{2013}\)+1+\(\frac{x+2}{2012}\)+1=\(\frac{x+3}{2011}\)+1+\(\frac{x+4}{2010}\)+1
⇔\(\frac{x+2014}{2013}\)+\(\frac{x+2014}{2012}\)=\(\frac{x+2014}{2011}\)+\(\frac{x+2014}{2010}\)
⇔\(\frac{x+2014}{2013}\)+\(\frac{x+2014}{2012}\)-\(\frac{x+2014}{2011}\)-\(\frac{x+2014}{2010}\)=0
⇔(x+2014)(\(\frac{1}{2013}\)+\(\frac{1}{2012}\)-\(\frac{1}{2011}\)-\(\frac{1}{2010}\))=0
Mà \(\frac{1}{2013}\)+\(\frac{1}{2012}\)-\(\frac{1}{2011}\)-\(\frac{1}{2010}\)≠0
⇔x+2014=0
⇔x=-2014
Vậy tập nghiệm của phương trình đã cho là:S={-2014}
2.\(\frac{3x+2}{4}\)+\(\frac{x+3}{2}\)=\(\frac{x-1}{3}\)-\(\frac{-x-1}{12}\)
⇔\(\frac{3\left(3x+2\right)}{12}\)+\(\frac{6\left(x+3\right)}{12}\)=\(\frac{4\left(x-1\right)}{12}\)+\(\frac{x+1}{12}\)
⇒9x+6+6x+18=4x-4+x+1
⇒15x+24=5x-3
⇒15x-5x=-3-24
⇒10x=-27
⇒ x=-\(\frac{27}{10}\)
Vậy tập nghiệm của phương trình đã cho là S={-\(\frac{27}{10}\)}
\(3.\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2+3}{1-x^2}=0ĐKXĐ:x\ne\pm1\)
\(\frac{1+x}{x-1}-\frac{x-1}{1+x}+\frac{x^2+3}{\left(1+x\right)\left(1-x\right)}=0\)
\(-3+7x-5x^2+x^3=0\)
\(\left(x-3\right)\left(x-1\right)\left(x-1\right)=0\)
\(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)Theo ĐKXĐ => x=3
\(4.\frac{1}{x+2}-\frac{3x}{x-2}=\frac{16}{x^2-4}ĐKXĐ:x\ne\pm2\)
\(\frac{1}{x+2}-\frac{3x}{x-2}=\frac{16}{x^2-2^2}\)
\(\frac{1}{x+2}-\frac{3x}{x-2}=\frac{16}{\left(x+2\right)\left(x-2\right)}\)
\(-5x-2-3x^2=16\)
\(-5x-2-3x^2-16=0\)
\(5x+18+3x^2=0\)
\(\left[{}\begin{matrix}x=\frac{-5+\sqrt{191t}}{6}\\x=\frac{-5-\sqrt{191t}}{6}\end{matrix}\right.\)